地震 主な地震帯と地震の頻度

Weblio 辞書 > 同じ種類の言葉 > 気象 > 気象予報 > 地震 > 地震の解説 > 主な地震帯と地震の頻度 

地震

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/14 04:22 UTC 版)

主な地震帯と地震の頻度

1963年から1998年に発生した、35万回以上におよぶ地震の分布図。地震の震央の分布にはっきりしたパターンがある。

主な地震の震源を地図にして地球の表面を概観すると、プレートテクトニクス理論における「環太平洋造山帯」や「アルプス・ヒマラヤ造山帯」の周辺は地震が特に多い地域があることが分かる。前述の2つの造山帯も含めた新期造山帯で最も地震が多く世界の地震活動の大部分を占める。このほか、ヨーロッパ西部やアジア北部などの古期造山帯でも比較的多く地震が発生する。

これらの地域は造山帯または地震帯(火山に着目した場合火山帯とも呼ぶ)と呼ばれ、地殻や地面の活動(移動)が活発で、地震も活発である。しかし、この地図はあくまで一定期間に発生した地震を集計したものであり、「地震の起こりやすさ」を表したものだが、この地図で地震が少ない国・地域(カナダ、ロシア、ブラジル、アフリカ大陸など)でも絶対に地震が発生しない、とはいいきれず、どの陸地でも地震は発生しうる。

ただし、地震の多い地域と、地震による被害が大きい地域は異なる。地盤の揺れやすさ、人口密度の大小、建造物の強度、社会情勢などによって被害や救助復旧の様子が異なるためである。一方、同じ地域においても、地震が発生する時間や時期などによっても被害は異なり、例えば調理を行う食事時間前や暖房を多く使う時間帯においては火災の多発、大都市では平日昼間における帰宅困難者の発生などが挙げられる。また、地震の規模が大きくなるほど断層の長さが長くなり、被害地域が広くなる傾向にある。津波が発生した場合は、揺れが小さい沿岸部や揺れが全くなかった遠隔地に津波が押し寄せ被害をもたらす。ハワイ諸島などは太平洋の中心にあって周囲に島が少ないため、環太平洋各地の遠隔地津波を受けやすいことで知られる。

地震のマグニチュードと頻度(明記なき場合は回/年)
Ms[64] 名称 震源が浅い場合に想定される被害[65] 日本周辺
防災研[65]
地球
USGS[66]
地球
USGS[67]
9+


数百 - 1,000 kmの範囲で大きな地殻変動を生じ、広域で大災害・大津波 数百年に1度 1[68] 0.3
8.5 内陸では広域大災害、海底であれば大津波 10年に1度
8.0 1.1
7.5

内陸では大災害、海底であれば津波 1-2 17[69] 3.1
7.0 15
6.5

震央付近で小被害、M7に近くなると大被害 10-15 134[69] 56
6.0 210
5 被害が出ることは少ない。 120 1,319[69]
4

震央付近で有感、震源がごく浅いと軽い被害 約1,000[70] 13,000[71]
3 震央付近で有感となることがある 約1万[72] 13万[71]
2 微小
地震
極まれに有感 毎時10回[注 14]
1 毎分1 - 2回
0
微小
地震
-1
1906年サンフランシスコ地震後の町の様子。建物が崩れ、煙が上がっている。
スマトラ島沖地震による津波に襲われたスマトラ島の町の様子。水や流木が町のほとんどを覆っている。

地球上で1年間に現行のネットワークで現行の機器で観測される地震回数は約50万回と推定されており、その内10万回が有感地震である[73][74]。1年間にM5以上の地震が平均約1,500回、M2以上の地震が平均145万回発生している。数の上では、世界で発生する地震の1割程度が日本付近で発生しているといわれ、また1996年から2005年の期間では世界で発生したM6以上の地震の2割が日本で発生しているとの統計があり[3]、客観的に見ても日本は地震の多い国と考えられる。

地震の発生の頻度が過去と比べて増加したかどうかということは、局地的に見ることはできても、全世界的に見ることは現状では難しい。地震の発生数のデータは、地震計の精度の向上や観測点のネットワークの状況などに左右される。世界的に見ても目が細かい日本の高感度地震観測網でも1990年代後半以降のデータであり、世界を見ても微小地震・極微小地震を捉えられるような観測網は少なく、海底となればその傾向は顕著である。

主な活断層・海溝・海盆

防災上、地震を引き起こす可能性の高い活断層の存在は注目される。日本では主要な数百の活断層の位置と再来間隔や規模などが調査・発表されている。活断層と同様に活褶曲も地震を発生させうるほか、活断層が無い地域に新たに断層が発生する可能性も否定できない。そのため、活断層の調査を中心とした地震防災に対する批判も存在している。

地球上の活断層(地溝海溝海盆などを含む)のうち、主なものを挙げる。これらは周期的に大地震を発生させると考えられている。このほか、地震活動が活発で多くの活断層を擁する歪集中帯と呼ばれる地域がある。

断層
海溝・海盆・沈み込み帯

地震の周期性

地層や地磁気反転等の観測から、数百年を超えるような長期的な視点ではプレートや地表の動きは平均されて一定になるというのが地質学の定説であり、それぞれのプレートの境界や断層で起こる地震は、一定の速度で蓄積される歪みが一定の周期で解放されて起こると説明できる。実際に観測や歴史地震でも、プレート境界型地震である南海地震、東南海地震、東海地震、宮城県沖地震などでは周期性が確認されているほか、内陸プレート内地震である北アナトリア断層の諸地震などでも確認されている。周期性のある地震を地震学では固有地震(相似地震)といい、現在のところマグニチュード4程度以上、再来周期数年以上の地震で発見されている。

M7.0 - 8.0くらいの海溝型地震においては50 - 300年程度、後述の連動型地震においては500年程度[注 15]チリ地震スマトラ島沖地震はこうしたタイプの地震であったと認識されている。[注 16]、地表付近の断層においては数百年 - 数十万年と、地震の周期はそれぞれ異なる。

1990年代後半日本で整備された高精度の地震観測から、プレート境界や断層の面内で地震の起こりやすさが異なることが発見され、それを説明する説として「アスペリティモデル」が提唱された。プレート境界や断層の面内には形状・硬さ・含水率・温度等の性質の差により、主に以下の3種類が存在するという考え方である。

  • 常に滑っていて小さな地震を起こし続けている部分
  • 常に滑っているが体に感じない滑りのみを起こし続けている部分
  • 普段は固着してひずみを蓄積しているが限界に達すると大きな地震を起こす部分

この3番目の部分をアスペリティといい、プレート境界や断層の面内には大きさやお互いの間隔がさまざまなアスペリティが存在していることが観測により推定[注 17]されている。アスペリティモデルでは、M7.0 - 8.0くらいの(単独型)海溝型地震は1つの大きなアスペリティまたは小さなものが少数同時に破壊して発生するもの、連動型地震は複数の大きなアスペリティが同時に破壊して発生するものと解釈されている。

1つのアスペリティで地震が起こるとそこの歪みが解放され周囲のアスペリティに負荷がかかることから、1つの固有地震の発生間隔が毎回少しずつずれるのはそうした周囲のアスペリティからの負荷の変化によるものと考えられている。この負荷を定量的に推定する方法としてプレート運動速度の観測と地殻表面の測量により求められるプレート間カップリングがあり、これにより求められた負荷を「本来滑るべきだがまだ滑っていない量」と考え「すべり欠損[注 18]」という。ただ、負荷の大きさはすべり欠損だけではなく、プレート境界や断層の面内によって値が異なる「破壊強度」を考慮する必要がある。あるアスペリティですべり欠損が破壊強度を超えた時に地震が発生する。

地震発生間隔のずれは、現在の長期的地震予知における大きな課題の1つとなっている。これに対処する方法としてアスペリティの推定や、発生間隔のずれを求めるためのすべり欠損の推定を行う研究者がいるが、精密地震観測が必要で、精度を高めるためには断層近傍で観測を行う必要があり、海溝型地震では海溝軸付近の海底に地震計を設置する必要があることから費用や労力が大きいという問題がある。

一方、一連の周期の中で生じる現象で実際に観測された例がある、本震発生前の前駆的地震活動前震など)、静穏化(空白域の形成)などから地震予知を行おうとしている研究者もいる。また、海溝型地震の前の歪の蓄積は内陸の地震活動に影響を与えるため西日本西南日本)が南海地震や東南海地]の前段階の地震活動期に入っているとの学説もあるが、判断するための資料が少ないといった反論もある。

日本では、主な海溝型地震や断層において調査された活動履歴から、主に繰り返し間隔と前回からの経過時間の推定によって、現在の活動確率を論じる「長期的地震予知」が行われている。しかし、このような長期的な予知を目安にした地震研究に対して、被害軽減への効果を疑問視し防災減災により地震に強い社会を構築することの重要性を説く専門家もいる[77][78][79]


注釈

  1. ^ 表面波もレイリー波ラブ波に分けられる。
  2. ^ 初期微動継続時間という。
  3. ^ 鉄道、新幹線エレベーターの緊急停止(P波管制運転)などで使用されているシステム。
  4. ^ 地震波の速度は地殻の密度(深さ)により異なるため、実際には観測に基づき地震波速度を予めまとめた「走時表」を用いて算出する。
  5. ^ 地震計は東西方向、南北方向、上下方向の3種類の地震動の大きさをはかるので、大体の方向(16方位程度)がわかる。
  6. ^ 例えば、Mが1大きくなると、それが表現するエネルギー量は約32倍となる。気象庁震度階級は同一振幅・周波数が数秒間継続した理想波形の場合6galで計測値2.50、60galで4.50であるが、実際の地震波は複雑なので対応関係は表現できない。
  7. ^ 英語圏では普通リヒター・スケール(Richter scale、発音はリクター・スケール)という。
  8. ^ 活断層の統一された定義はない。古典的には、(旧来区分における)第四紀開始以降に活動したと推定される断層を活断層という。なお、2009年より第四紀の区分が変更されたので、現在の区分では「更新世中期の開始以降」にあたる。断層の活動性を考える上では、より重要度の高い「約10万年前にあたる更新世後期の開始以降」に限定する場合がある。[5]
  9. ^ 2000年鳥取県西部地震、2005年福岡県西方沖地震、2007年能登半島地震などは知られていなかった活断層で発生した。
  10. ^ 「海溝型地震」は海溝付近のプレート内部の地震を含める場合があるため、狭義に「海溝沿いのプレート間地震」と呼ぶ場合もある。
  11. ^ この地震は津波規模から推定されるモーメント・マグニチュード (Mw) 8.2で三陸沿岸に遡上高30m超の多津波をもたらしたが、最大震度は2 - 3だった。そのため地震の規模は長らく表面波マグニチュード (Ms) 7.6とされており、研究の進展により21世紀になって前記の値に見直された[41]
  12. ^ 新潟県中越地震東日本大震災東北地方太平洋沖地震)で地震被害が比較的少なかったのは、キラーパルスが少なかったからである。
  13. ^ 盆地状の地形に厚い堆積層がある地域を指す地質学用語で、関東平野大阪平野などの通常は「平野」と呼称される地域も該当する。
  14. ^ 年換算は8万7600回
  15. ^ たとえばM8級の東海地震南海地震は100年 - 150年周期で発生するとされるが、500年以上の長い周期でM8.5 - 9.0の連動型超巨大地震の発生が予想されている[76]
  16. ^ 纐纈一起 (2011) は、断層のずれとひずみ量の計算から、東北太平洋沖の連動型巨大地震の周期を400 - 600年(中心を438年)とした[要出典]
  17. ^ アスペリティは、微小地震の観測や立体的な地震波速度構造(アスペリティは周囲よりも地震波速度が高い)等により推定できるとされている。
  18. ^ すべり欠損は通常の断層運動方向とは逆であることが多いため「バックスリップ」という場合もある。
  19. ^ 防災科研は主に、短周期成分が多い小地震に適した高感度地震計、長周期成分が多い大地震に適した強震計、幅広い周期に適応した広帯域地震計の3種類の観測網を有する。

出典

  1. ^ 日本地震学会地震予知検討委員会(2007)
  2. ^ a b 宇津『地震学』1頁
  3. ^ 宇佐美龍夫 (2002) (PDF) 宇佐美龍夫 「歴史史料の「日記」の地震記事と震度について」『歴史地震』 第18号、1-14、2002年
  4. ^ 石橋克彦, 「2016年熊本地震は異例ではない : 大局的に活動の意味を考える (PDF) 」『科学』 86巻 6号, p.532-540, 2016-06, 岩波書店, NAID 40020863485
  5. ^ 地球史Q&A」 日本地質学会。
  6. ^ 地震の基礎知識とその観測 6.2 活断層 防災科学技術研究所
  7. ^ "【専門家解説】能登半島地震 港の場所が陸に…最大約4mの隆起も". 真相報道バンキシャ!. 7 January 2024. NNN. 日本テレビ
  8. ^ 山中浩明、武村雅之、岩田知孝、香川敬生、佐藤俊明『地震の揺れを科学するーみえてきた強振動の姿』東京大学出版会、7月27日。 
  9. ^ 2.1段層運動 - Hi-net 防災科研”. 2022年9月2日閲覧。
  10. ^ 『なゐふる第3号』p. 4「関東大地震(大正12年9月1日)」 (PDF) 日本地震学会
  11. ^ 群発地震発生のメカニズムを解明 産業技術総合研究所、2002年9月5日
  12. ^ 「フィリピン海プレートの水分が阪神淡路大震災を誘発か?」1999年3月9日付神戸新聞
  13. ^ 中越沖地震、直下のマグマが原因か 2007年8月7日付読売新聞[リンク切れ]
  14. ^ 岩手・宮城地震、水が断層滑らす?…東北大分析2009年10月24日付読売新聞[リンク切れ]
  15. ^ 岩手・宮城内陸地震 断層に入った水原因か2010年1月17日付読売新聞[リンク切れ]
  16. ^ 島村英紀「人間が起こした地震」
  17. ^ 立命館大学「水没した1km深鉱山で地下水変化に誘発された地震」
  18. ^ 野坂俊夫「海洋下部地殻および上部マントルの変質作用と変質鉱物」『地学雑誌』第117巻第1号、東京地学協会、2008年、253-267頁、doi:10.5026/jgeography.117.253 
  19. ^ 【研究成果】水を含んだマントル岩石が,地震発生の原因となる可能性を発見”. 理学部. 広島大学. 2022年5月26日閲覧。
  20. ^ Kita, Saeko (2018年11月19日). “Physical mechanisms of oceanic mantle earthquakes: Comparison of natural and experimental events” (英語). Scientific Reports. ネイチャー. pp. 17049. doi:10.1038/s41598-018-35290-x. 2022年5月26日閲覧。
  21. ^ Smyth, J. R.; Frost, D. J.; Nestola, F.; Holl, C. M.; Bromiley, G. (2006). “Olivine hydration in the deep upper mantle: Effects of temperature and silica activity”. Geophysical Research Letters 33 (15): L15301. Bibcode2006GeoRL..3315301S. doi:10.1029/2006GL026194. オリジナルの2017-08-09時点におけるアーカイブ。. https://web.archive.org/web/20170809105549/http://ruby.colorado.edu/%7Esmyth/Research/Papers/Hydrolivine.pdf 2017年10月26日閲覧。. 
  22. ^ Earth Tides Can Trigger Shallow Thrust Fault Earthquakes
  23. ^ 地震と潮汐力の関係
  24. ^ 長野県栄村で地震で多発、「潮汐」引き金 地殻変動と重なる 産総研分析(MSN産経ニュース/産経新聞 2012年3月19日)[リンク切れ]
  25. ^ PDF版なゐふる91号(2012年10月) (PDF) 日本地震学会
  26. ^ 地震、月や太陽の引力が「最後の一押し」科学 YOMIURI ONLINE(読売新聞) 2010.01.29[リンク切れ]
  27. ^ 巨大地震、大潮の時期に発生確率上昇か 東大研究(AFPBB News 2016年9月13日)
  28. ^ 月の引力、大地震と関係か 東大チーム(日本経済新聞 2016年9月13日)
  29. ^ 東日本大震災:本震直後に箱根で誘発地震4回、揺れ増幅し強羅は震度6弱、温地研が地震波解析/神奈川
  30. ^ 東北地方太平洋沖地震により誘発された箱根火山の地震活動 (PDF) 行竹洋平、本多亮、原田昌武、明田川保、伊東博、吉田明夫、神奈川県温泉地学研究所, 日本地球惑星科学連合 2011年度連合大会 ポスター MIS036-P100, 2011年5月26日。
  31. ^ 東北地方太平洋沖地震に関連する研究 宮澤理稔, 京都大学防災研究所
  32. ^ Effects of acoustic waves on stick-slip in granular media and implications for earthquakes Paul A. Johnson, Heather Savage, Matt Knuth, Joan Gomberg, Chris Marone, “Nature” 451, 57-60 2008年1月3日. doi:10.1038/nature06440日本語訳)(閲覧には登録が必要)
  33. ^ 宇津『地震学』137頁
  34. ^ USGS Updates Magnitude of Japan’s 2011 Tohoku Earthquake to 9.0 USGS
  35. ^ 宇津『地震学』121頁
  36. ^ a b c d e f g h i j k l m n 新版 地学事典』、菊池正幸「海溝型地震」119頁、杉憲子「海嶺型地震」216頁、下鶴大輔・山科健一郎「火山性地震」231-232頁、石川有三「直下型地震」842頁、三東哲夫「トランスフォーム型地震」930頁、石川有三「プレート境界地震」1160-1161頁、菊池正幸「プレート内地震」1161頁
  37. ^ 地震の事典』第2版、13頁
  38. ^ a b c 日本の地震活動』第2版、§2 19頁
  39. ^ 自然災害の事典』24-31頁
  40. ^ a b 強震動の基礎 ウェブテキスト2000版』§2.1.3
  41. ^ 過去の地震・津波被害 気象庁
  42. ^ 日本の地震活動』第2版、§2 21頁
  43. ^ 東日本大震災6カ月 巨大地震の謎は解明できたのか(産経新聞/MSN産経ニュース 2011年9月11日)
  44. ^ 海底活断層が起こした可能性も 東日本大震災(佐賀新聞 2011年09月23日) Archived 2011年9月24日, at the Wayback Machine.
  45. ^ 壊れた「留め金」…海底の山の破壊が大震災誘発か(産経新聞 2011年10月8日)[リンク切れ]
  46. ^ 日本海溝沿いの活断層と地震に関する予察的考察 中田高, 後藤秀昭, 渡辺満久, 鈴木康弘, 西澤あずさ, 泉紀明, 伊藤弘志, 日本地球惑星科学連合 2011年度連合大会 ポスター MIS036-P189, 2011年5月27日
  47. ^ 東北地方の主な地震活動(2012年11月) (PDF)
  48. ^ 海溝型地震と活断層型地震 - 防災科学技術研究所
  49. ^ 気象庁|報道発表資料
  50. ^ 松澤暢、「2011年東北地方太平洋沖地震後の地殻活動について」 日本地質学会 第120年学術大会(2013仙台)セッションID:S1-O-5, doi:10.14863/geosocabst.2013.0_005
  51. ^ 「大震災2年 戻らぬ沈下地盤 M7級警戒必要」読売新聞2013年3月10日15面
  52. ^ 石川有三、尾池和夫、「中国のダム誘発地震について」 地震 第2輯 1982年 35巻 2号 p.171-181, doi:10.4294/zisin1948.35.2_171
  53. ^ ダムが地震を起こす 週刊プレイボーイ2003年7月8日号[リンク切れ]
  54. ^ 上田誠也「地震予知研究の歴史と現状」 学士会会報 2007-IV No. 865
  55. ^ 小出仁「ハイドロフラクチュアリングとマグマフラクチュアリング」『地質ニュース』第290号、1978年10月http://www.gsj.jp/publications/pub/chishitsunews/news1978-10.html 
  56. ^ 地震続発で地熱発電計画にストップ バーゼル
  57. ^ 「鉱山地震活動、ガス爆発およびこれらと震源物理研究との関係の重要性」
  58. ^ Minor Quakes In the UK Likely Caused By Fracking記事:2011年11月03日 閲覧:2011年11月08日
  59. ^ NEWS SCAN 2009年1月号:日経サイエンス「氷河の健康状態を診断する新手法」
  60. ^ 松代地震観測所での地下核実験の観測能力について 気象庁地震観測所技術報告 第9号 37〜45頁 昭和63年3月
  61. ^ 「北海道における地震に関するアイヌの口碑伝説と歴史記録」新里・重野・高清水(歴史地震第21号2006年)[1]PDF-P.10
  62. ^ 地震 earthquake 世界の神話・民話 :幻想世界神話辞典
  63. ^ 強震動 - 地震災害の軽減のための基礎的な情報 纐纈一起、2005.
  64. ^ 以上、次のMまで
  65. ^ a b 防災科学技術研究所 「1.2 マグニチュード」 閲覧2017-10/14
  66. ^ 国土交通省・気象庁 「表1 世界の地震回数(1年間の平均:USGS(アメリカ地質調査所)による)」 閲覧2017-10/14。1990年以降のデータより。
  67. ^ USGS Measuring the Size of an Earthquake / magnitude 閲覧2017-10/14。直近の47年間の観測データからの計算値であり、どの期間をとるかで結果は大きく振れると注意書きを入れている。
  68. ^ 1900年以降のデータより
  69. ^ a b c 1990年以降のデータより
  70. ^ 原典では1日数回
  71. ^ a b 推定値
  72. ^ 原典では1日数十回
  73. ^ Earthquake Facts”. United States Geological Survey. 2010年4月25日閲覧。
  74. ^ Pressler, Margaret Webb (2010年4月14日). “More earthquakes than usual? Not really.”. KidsPost (Washington Post: Washington Post): pp. C10 
  75. ^ 北米西海岸で西暦1700年に発生した巨大地震の規模を日本の古文書から推定産総研
  76. ^ The Assumed Aseismic Subduction and the Necessity of Ocean-Bottom Crustal Deformation Measurements at the Ryukyus, Japan M Nakamura, M Ando, T Matsumoto, M Furukawa, K Tadokoro, M Furumoto, AGU, 2006
  77. ^ 【地震学はどう変わったか (3-3)】予知困難 等身大の説明大切 msn産経ニュース、2012年3月8日。
  78. ^ 2011年3月 東北地方太平洋沖地震 Archived 2011年4月18日, at WebCite 東京大学地震研究所広報アウトリーチ室、2012年1月24日の版。
  79. ^ 地震学、再建への道:想定外の事態に備える 金森博雄(翻訳:三枝小夜子), Nature, 473, pp.146-148, 2011年5月12日(翻訳版Natureダイジェスト2011年7月号)。
  80. ^ a b 曽篠恭裕, 宮田昭, 柿本竜治「大規模災害における国際医療救援資機材輸送の実態分析」『土木学会論文集D3(土木計画学)』第74巻第5号、土木学会、2018年、I_141-I_154、doi:10.2208/jscejipm.74.I_141NAID 130007555537 
  81. ^ イード. “東京工科大など、災害時用のナビシステムを開発 …危険な方向を表示 Action Japan! - アクションジャパン|復興支援サイト -”. 2013年9月18日閲覧。
  82. ^ 星野楽器の安全にお使いいただくために
  83. ^ 図録▽世界各国の地震災害(地震回数・死者数)[信頼性要検証]
  84. ^ Jishingaku. Tokuji Utsu, 徳治 宇津. 共立出版. (2001). ISBN 4-320-04637-4. OCLC 675380007. https://www.worldcat.org/oclc/675380007 
  85. ^ 火星の「地震」を観測、謎解明に前進 NASA探査機、AFPBB News、2020年2月26日。
  86. ^ 火星の地震を初観測、なぜ起こる?何がわかる?M2〜2.5で揺れは10分継続、火星探査機インサイトの最初の成果、ナショナルジオグラフィック日本版サイト、2019年4月26日。
  87. ^ 柴田明徳 (2007年). “1)菅原道真と地震” (PDF). 歴史の中の地震、2.歴史の中の大地震. 東北大学災害科学国際研究所. 2014年9月14日閲覧。
  88. ^ 第78回「地震と磁石」の巻|じしゃく忍法帳|TDK Techno Magazine - 2020年5月20日閲覧。






地震と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「地震」の関連用語

地震のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



地震のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの地震 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS