水素 用途

水素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/10 20:58 UTC 版)

用途

スペースシャトルメインエンジン。1機を打ち上げるには150万リットルの液体水素が使われる[37]

代表的な用途

上記で述べたように、水素ガスの生産は原料を化石燃料に依存しており、水蒸気改質により発生する一酸化炭素などのうち化成品に利用されない過剰分や燃料として利用される炭化水素は二酸化炭素として環境中に放出される。水素の原料が化石燃料である限りにおいては、水素を化石燃料の代替として利用してもそのまま化石燃料の消費量が削減されたり二酸化炭素の発生が抑えられたりすることにはならない。

  • 浮揚ガス - 1リットルの水素を詰めた風船は1.2グラムの質量を浮揚させる[1]。この性質から気球飛行船などに用いられていたが、ヒンデンブルク号爆発事故が起きて以来、危険性の少ないヘリウムで代用されるようになった。なお、この事故の直接的原因は外皮の塗料への引火とされている。
  • 冷却剤 - 液体水素は超伝導現象を含む低温学の調査に使用される。また、一部の発電所では、水素ガスを冷却媒体として用いている発電機もある。これは空気よりも熱伝導率が7倍と高く[1]風損が少ないためである。水素ガスが漏れないようにするため、水素ガス圧力よりも高い圧力の油を流し遮蔽しなければならないという作業が発生する。
  • 洗浄 - 工業分野では、半導体の洗浄はRCA洗浄が主流で、アンモニアや塩酸フッ化物が用いられるが、その代替として水素を水に溶かし込んだ水溶液は排水処理の面で環境負荷が低く[41]、半導体の基板表面の微粒子除去・洗浄に用いられる[42]
  • 溶接 - 水素分子をいったん2つの水素原子に解離させ、それを再結合させると多量の熱を発生する。これを利用した金属溶接法がある[14]
  • その他 - テクニカルダイビングや軍隊などで大深度潜水時の使用が試みられたが、同時に酸素も用いられるために爆発の可能性が使用中につきまとうなど、危険であるため使用されていない。
  • 標準水素電極標準電極電位の基準として用いられている。

エネルギー利用

水素はエネルギー変換効率が高く、燃焼すると水蒸気)となり、温室効果ガスとされる二酸化炭素大気汚染物質を排出しない。現状では、化石燃料を使って製造しているものの、将来的には、水の電気分解バイオマスごみなどを利用することにより、化石燃料によらないで製造できる可能性がある。このため、将来性の高いエネルギーの輸送および貯蔵手段として期待される[16]

水素はさまざまな利用法が考えられている。燃焼を直接使う方法としては水素自動車が挙げられるほか、火力発電の燃料に水素を混ぜて二酸化炭素などを減らす技術が研究されている[43]

水素を言わば「電池」として利用することも考えられている。鉛蓄電池リチウム電池NAS電池など、比較的大きな容量の充電が可能な電池がいろいろと開発されてきたものの、それでも電気エネルギーは貯めておくのが比較的困難なエネルギーとして知られている。そこで、必要以上の電力が得られるときに電気分解して生産した水素を貯蔵し、電力が必要となった時に貯蔵しておいた水素を使って発電を行うのである。必要以上の電力が得られるときに水をポンプで汲み上げて水の位置エネルギーとして電気エネルギーを貯める揚水発電はすでに実用化されているが、それと同様に電力需要のピーク時に対応する手法のひとつとして水素は利用できる。

ほかにも太陽光発電風力発電といった発電法のように、発電量が比較的自然条件に左右されやすいものの、十分な発電量が得られるときに水の電気分解を行って水素を貯蔵するという方法で、これらの発電量の不安定さを解消する方法が考えられている。

また、水素を電力の輸送手段として利用することも考えられている。長距離の送電を行うと送電線の抵抗などの関係で送電によるエネルギーの損失(送電ロス)が多くなる。小水力発電火力発電や比較的低温の熱源を利用した発電法などのように、電力需要の多い都市の近くに発電所を立地できる場合は送電ロスの問題もあまりない。しかし、必要に応じて変圧を行うなど送電ロスを少なくする工夫は行われているものの、2011年時点では送電ロスなしに長距離を送電する手法は実用化されていない。このためいわゆる自然エネルギーを利用した発電法に限らず、あらゆるエネルギーを利用した発電法において電力の供給地と需要地とが離れている場合には、どうしても送電ロスの問題が避けられない。ここで水素として輸送すれば、水素を逃がさなければ輸送中の水素のロスは発生しない。ただし水素を輸送する手段によって消費されるエネルギー(たとえば自動車で輸送すれば燃料が消費される)もあるため、どうしてもエネルギーのロスは発生してしまうという問題は残る。また、水素から電気に戻す際にもエネルギーロスが発生する。ただし、このロスは、として利用できる。

最近ではマグネシウムと水を反応させて水素を作り出す方法も開発されている。マグネシウムと水が反応して発生する水素のほか、反応時の熱もエネルギー源として利用できる。最大の課題は使用後のマグネシウムの還元処理で、太陽光などから変換したレーザー照射による高温により還元する方法が考えられている。ほかに燃料電池の燃料としての水素の利用はよく知られているが、コンバインドサイクル発電などに利用することも考えられている。

燃料電池

空気中の酸素と反応させて水を生成しながら発電する水素 – 酸素型燃料電池は19世紀中ごろには実験的に成功したが、生活家電などの分野へは応用されず、20世紀の宇宙開発を通じて技術検討が進んだ。燃料電池は現時点の技術においては発電効率が35 - 60パーセントと高く、発熱エネルギーを回収することができれば80パーセントまで高めることができる。環境負荷も低いという利点がある。燃料にはメタノールを用いる機械もあるが、水素ガスを利用するものでは自動車への積載を念頭に置いた固体高分子形燃料電池(PEFC)が有力視されており、電解質分離膜や電極劣化の抑制など技術開発が進められている[16]。また宇宙船では燃料電池から得られる電力のほかに、同時に生成される水の利用も行われることがある。

貯蔵技術

水素をエネルギー利用する上での課題のひとつには、ガス状水素を貯蔵する際の問題がある。既述のように空気との混合4.1 - 74.2パーセントという広い爆発限界の範囲を持つために、漏出しないようにする技術が必要となる。水素は原子半径が小さいために容器を透過したり、劣化させたりするため、ほかの元素や燃料を貯蔵するのとは勝手が違ってくる。2002年2月に発足した「燃料電池プロジェクト・チーム」の報告では、自動車に積載しガソリン相当の 500km以上走行が可能な水素貯蔵を目標に据えた。これに相当する水素ガスは5kgであり、常温常圧下では61,000リットルに相当する[16]

従来の貯蔵手法では、高圧化と液体化の2つがある。水素は金属脆化を起こすため、特に高圧ガスを密閉するにはアルミニウム – マグネシウム – シリコン合金をファイバー強化したものが開発されているが、日本の高圧ガス保安法が定める上限の350気圧では実用的に自動車積載が可能なガス量は3.5kgにとどまり、5kgを実現するためには安全に700気圧相当を密封できる容器が検討されている。液体化も同様の問題を解決する必要があり、オーステナイト系ステンレス鋼やアルミニウム合金・チタン合金などを素材に検討が進む。しかし、高圧化や液体化には密封する際にも加圧や冷却などでエネルギーを消費してしまう点も課題として残る[16]

水素を貯蔵する物質には金属類である水素吸蔵合金と、無機・有機物質が提案されており、いずれも水素化物を作り効率的に水素を捕まえることができる。水素吸蔵合金は、ファンデルワールス力分子間力の一種)で表面に吸着(物理吸着)させた水素分子を原子に解離(解離吸着、化学吸着)し、水素化合物を反応生成しながら合金の格子内に水素原子を拡散させる。取り出すには加熱または合金周囲の水素ガス量を減らすことで水素化物が分解しガスが放出される。必要な温度は通常50℃であり、高くとも250℃程度、圧力も常圧から100気圧程度までであり、水素ガスの体積を1,000分の1に収めることができる。課題は合金と水素の重量比にあり、現状では5kgの水素を吸蔵するための合金重量は170 - 500kg程度が必要になる[16]。このほか、イオン結合を主とする錯体水素化物や、アンモニアボランなども水素吸蔵性能を持つ物質として研究されている[16]

水素循環社会

自然エネルギーからの電気(太陽光発電人工光合成)によって水の電気分解から水素を生成してエネルギー媒体として貯蔵し、燃料電池を使って発電し電気を取り出すというエネルギーの循環構想がある[44]

一見、理想的で無駄のないサイクルに思えるが、電気分解から燃料電池による発電までの工程ではニッケル水素電池リチウムイオン充電池と比較して効率が大幅に低い。高分子固体電解質を利用した電気分解の工程では分解時に両極でガスが発生するが、これが連続した反応を阻害する一因となる。また、燃料電池での発電工程でも同様に燃料電池のガス拡散電極の特性上、電流密度を上げるためにはスタックを重ねなければならず、取り出す電流を2倍にしようとすれば電極の面積も2倍にしなければならず、単位容積ごとの効率が低い。貯蔵時にも専用の高圧タンクや水素吸蔵合金を使用しなければならないため、単位体積ごと、あるいは単位重量ごとのエネルギー密度を下げる要因になり、利点を相殺してしまっている。

生体研究

水素に関する研究について概説する。1671年にはロバート・ボイルによって水素ガスが生成され、水素はガスであると認識され、生理的に不活性なガスだと考えられ、注目されなかった[45]。初期には、水素分子の生物学的効果は小規模に研究されてきた[46]。1975年に、Doleらは水素ガスが動物の皮膚腫瘍を退縮するという研究結果を『サイエンス』にて報告したが[47][48]、注目はされなかった[48][45]肝臓に慢性の炎症を持つマウスでの高圧水素の抗炎症作用は、2001年に報告された[46]。こうした研究は数が限られている[46]

水素ガスを含む吸気として、たとえば飽和潜水用のガスとして水素50パーセント、ヘリウム49パーセント、酸素1パーセント用の混合気が用いられており、この場合、水素に起因する毒性や安全性の問題は見られていない[49]

ボストン小児病院、ハーバード大学医学部の研究でも、水素ガスの吸入による細胞障害、組織障害のような有害事象はないことが報告されており[50]、名古屋大学医学部産婦人科、香川大学医学部産婦人科の研究においても、水素の摂取による毒性や催奇性はないことが報告されている[51][52]

ただし、水素は爆発性を有する気体であり、爆発濃度においては静電気のような微弱なエネルギーで爆発する危険性がある。従って、水素ガス吸入療法においては、爆発限界濃度以下(10%以下)の水素ガスを発生させる水素ガス吸入機を用いることが重要であると、市販の水素ガス吸入機の安全性について警鐘を鳴らす論文が2019年に発表されている[53][26][54]。実際に消費者庁の事故情報データシステムで水素ガス吸入機の爆発事例が複数報告されている[55]

日本における水素の医療利用の研究に関する最初の報告は、2003年のヒドロキシルラジカルによる水素分子の水素引き抜き反応によって、種々の酸化ストレスに起因する疾病を予防または改善する報告に遡る[56]。さらに2005年には、ラットの酸化剤誘発モデルに対する水素水の抗酸化効果が報告された[57]

日本医科大学での2007年の実験[58]を受けて、慶應義塾大学では2012年から心停止のラットでの治療モデルを確立してきた[59]。2015年10月には、慶應義塾大学先導研究センター内に水素ガス治療開発センターが開設された[59]

心肺停止時の水素ガスの吸入は先進医療Bに認定され、研究が進められている[60]。従来の研究では動物を対象として心停止の際の脳・心臓の臓器障害抑制が調査されていたが、2016年9月には、初のヒトを対象とした研究が公表され、5人中4人が90日後には普通の生活に戻った[61]。これは慶應義塾大学を中心として2月に開始された臨床研究であり、心停止の影響によって寝たきりとなる、言葉がうまく話せなくなるといった後遺症が残る事が多く、これを抑制するための医療現場への導入が目標とされている[62]

αグルコシダーゼ阻害剤である糖尿病治療薬のアカルボースを服用すると炭水化物の吸収が抑制され、大腸の腸内細菌により水素などが発生する。アカルボースの服用が心血管事故を抑制する可能性があり、この原因として高血糖の抑制に加えて、呼気中に水素ガスの増加が認められ、この増加した水素の抗酸化作用で心血管事故を抑制するメカニズムが想定されている[63]

水素と水素が水に溶存した水素水の研究は、2007年から2015年6月までで321の水素の論文があり、臨床試験も年々増加してきた[46]

上述のように水素は従来の医薬品とは異なり、病気の根源である酸化ストレスを抑制し広範囲の疾病に対する改善効果を有することから、病気に対する「ワイドスペクトラム分子」と呼ばれる可能性がある[64]

2019年12月10日現在、水素の医療利用に関係する学術論文は600報を超える[65][66]


注釈

  1. ^ 次いでヘリウムが約25パーセント[8][9]
  2. ^ Dias & Silvera (2017) は495GPaの圧力において固体と推定される金属水素が得られたと発表したが、この実験結果については多くの科学者が疑問視している[22][23]
  3. ^ ハロゲンに近い性質を持つため、1周期系列と17族の位置に変更すべきというもの。

出典

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y 桜井 1997.
  2. ^ a b c d e f g h i j 化学工業日報 1996, pp. 233-234, 水素.
  3. ^ Magnetic susceptibility of the elements and inorganic compounds (PDF) (2004年3月24日時点のアーカイブ), in Handbook of Chemistry and Physics 81st edition, CRC press.
  4. ^ Palmer, D. (1997年9月13日). “What is the known percentage of hydrogen in the Universe and where is it?”. NASA. 2010年5月8日閲覧。
  5. ^ Anders & Grevesse 1989, p. 197.
  6. ^ クリエイティブ・スイート 2009, p. 22.
  7. ^ 西尾正則. “宇宙科学入門第7回資料 (PDF)”. 鹿児島大学理学部. 2010年5月9日閲覧。
  8. ^ a b 井田 2014, p. 9.
  9. ^ a b Asplund et al. 2009, pp. 24 & 46.
  10. ^ The Element Hydrogen”. JLab. It’s Elemental. 2021年4月17日閲覧。
  11. ^ Williams, David R. (2020年11月25日). “Earth Fact Sheet”. NASA. 2021年4月17日閲覧。
  12. ^ a b 日経サイエンス編集部 2009.
  13. ^ a b 化学工業日報 1996, pp. 234-235, 重水素.
  14. ^ a b c d e f g h i Lee 1982, pp. 119-123, 3. 元素の一般的性質: 水素.
  15. ^ Audia et al. 2003, p. 27.
  16. ^ a b c d e f g h 東北大学金属材料研究所 2009.
  17. ^ 〈研究例紹介〉液化水素用水素分子核スピン転換触媒の開発”. 北海道大学大学院工学研究院附属エネルギーマテリアル融合領域研究センター マルチスケール機能集積研究室. 2020年6月10日時点のオリジナル[リンク切れ]よりアーカイブ。2020年6月10日閲覧。
  18. ^ Weir, Mitchell & Nellis 1996.
  19. ^ W. J. ネリス (2000年8月). “水素の金属を作る”. 日経サイエンス. 2021年4月17日閲覧。
  20. ^ ビル・アーネット (1995年8月29日). “木星”. 金光研究室. ザ・ナイン・プラネッツ. 2010年5月9日閲覧。
  21. ^ 長柄 2003.
  22. ^ a b Maccarone, Mattia; Takeshi Othoshi(訳) (2017年2月14日). “生み出された「金属水素」、さて何の役に立つのか?”. WIRED.jp. コンデナスト・ジャパン. 2021年5月12日閲覧。
  23. ^ Castelvecchi 2017.
  24. ^ 玉尾, 桜井 & 福山 2010, 付録. 112元素の周期表.
  25. ^ 井上 2016.
  26. ^ a b Kurokawa et al. 2019.
  27. ^ IUPAC Nomenclature of Organic Chemistry /Recommendations 1979 and Recommendations 1993 by ACD Lab. Inc.)
  28. ^ a b c d Lee 1982, pp. 123-126, 3. 元素の一般的性質: 水素化物.
  29. ^ Hydride - PubChem Public Chemical Database”. The PubChem Project. USA: National Center for Biotechnology Information. 2016年5月19日閲覧。
  30. ^ METAL HYDRIDES, WATER-REACTIVE, N.O.S. (version 2.6 ed.), Alternate Chemical Names: Cameo Chemicals, https://cameochemicals.noaa.gov/chemical/3592 2016年5月19日閲覧。 
  31. ^ “Hydrogen anion”, NIST Standard Reference Database 69: NIST Chemistry WebBook (The National Institute of Standards and Technology (NIST)), http://webbook.nist.gov/cgi/inchi/InChI%3D1S/H/q-1 2016年5月19日閲覧。 
  32. ^ ヒドリドイオン”. LSDB. 学術用語の日本語と英語の対応. ライフサイエンス統合データベースセンター. 2019年6月13日時点のオリジナル[リンク切れ]よりアーカイブ。
  33. ^ 九州大学科学技術振興機構日本原子力研究開発機構 (2007年4月27日). “用語解説”. 水素活性化酵素のモデル化に成功. 注2: ヒドリドイオン: 科学技術振興機構. 2017年7月25日閲覧。
  34. ^ ヒドリドイオン, コトバンク, https://kotobank.jp/word/%E3%83%92%E3%83%89%E3%83%AA%E3%83%89%E3%82%A4%E3%82%AA%E3%83%B3-1692867 2016年5月19日閲覧。 
  35. ^ 玉尾, 桜井 & 福山 2007.
  36. ^ 経済産業省大臣官房調査統計グループ 2020, p. 9.
  37. ^ 玉尾, 桜井 & 福山 2010, pp. 86-87.
  38. ^ 水素を生かす(上)初のセルフ式ステーション」『日本経済新聞』朝刊2019年1月6日(サイエンス面)2019年2月24日閲覧。
  39. ^ 既存添加物名簿収載品目リスト(日本食品化学研究振興財団、平成26年2月6日更新)2016年6月30日閲覧。
  40. ^ Agency Response Letter GRAS Notice No. 520 FDA, November 28, 2014.
  41. ^ 日本鍍金材料協同組合 2008.
  42. ^ 黒部 2008.
  43. ^ 「水素を発電燃料に 千代田化工など、東南アから輸入」『日本経済新聞』電子版(2017年7月27日)2018年5月11日閲覧
  44. ^ 古川一夫 (2015年3月2日). “水素社会構築に向け、新たな研究開発を開始”. 2015年7月11日閲覧。
  45. ^ a b 李 et al. 2015.
  46. ^ a b c d Ichihara et al. 2015.
  47. ^ Dole, Wilson & Fife 1975.
  48. ^ a b 大澤 2013.
  49. ^ Nicolson et al. 2016.
  50. ^ Cole. “Safety of inhaled hydrogen gas in healthy mice”. www.medgasres.com. 2020年2月14日閲覧。
  51. ^ 早産における分子状水素の予防効果と母獣長期投与の胎仔への影響”. KAKEN. 2020年2月14日閲覧。
  52. ^ 新生児低酸素性虚血性脳症に対する低体温と水素吸入ガス併用療法の効果に関する研究”. KAKEN. 2020年2月14日閲覧。
  53. ^ 世界唯一の爆発しない水素ガス吸入機の開発”. プレスリリース・ニュースリリース配信シェアNo.1|PR TIMES. 2020年2月14日閲覧。
  54. ^ 大学ジャーナルオンライン編集部 (2019年9月26日). “市販の水素ガス吸入機に爆発危険性 慶應義塾大学とMiZが共同研究 | 大学ジャーナルオンライン”. 大学ジャーナル. 2020年2月14日閲覧。
  55. ^ 事故情報データバンクシステム”. www.jikojoho.go.jp. 2020年2月14日閲覧。
  56. ^ MiZ株式会社 水素を含有する薬理機能水およびその用途に関する特許公報 (特許第4783466号)”. www.j-platpat.inpit.go.jp. 2020年2月14日閲覧。
  57. ^ Yanagihara et al. 2005.
  58. ^ Ohsawa et al. 2007.
  59. ^ a b 佐野 2016.
  60. ^ 先進医療 B 実施計画等評価表(番号 B066)2016年7月14日
  61. ^ Tamura et al. 2016.
  62. ^ 心停止の患者 水素で脳ダメージ軽減 臨床研究開始へ”. NHK科学文化部ブログ (2016年2月20日). 2017年4月1日閲覧。
  63. ^ 入江 & 伊藤 2012.
  64. ^ Hirano et al. 2020b.
  65. ^ 「水素分子の各種疾患又は疾患モデルに対する 効果を報告した文献一覧」MiZ株式会社”. 2020年2月18日閲覧。
  66. ^ Hirano et al. 2020a.






水素と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「水素」の関連用語

水素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



水素のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの水素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2021 GRAS Group, Inc.RSS