ラジウム【radium】
ラジウム
英語表記:radium
キュリー夫妻が発見(1898年)した天然放射性核種。記号はRaと記す。原子番号88、原子量226.0254の天然に存在する代表的な元素である。
ラジウムには質量226のウラン系列核種、223のアクチニウム系列核種、224,228のトリウム系列核種の3系列があり、α崩壊するものが多い。単体は白色の金属で、融点約700℃、沸点約1140℃、比重5~6、化学的性質はアルカリ土類金属に似ている。
Ra-226は半減期1622年と長く、医療用や放射線の標準として用いられる。天然ラジウムは従来放射線源や発光塗料(夜光時計等)などに使われてきたが、特に発光塗料では、α線による被ばくが影響が問題となるので近年はほとんど使用されていない。
ラジウム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/06/02 19:22 UTC 版)
|
|||||||||||||||||||||||||||||||
外見 | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
銀白色![]() |
|||||||||||||||||||||||||||||||
一般特性 | |||||||||||||||||||||||||||||||
名称, 記号, 番号 | ラジウム, Ra, 88 | ||||||||||||||||||||||||||||||
分類 | アルカリ土類金属 | ||||||||||||||||||||||||||||||
族, 周期, ブロック | 2, 7, s | ||||||||||||||||||||||||||||||
原子量 | (226) | ||||||||||||||||||||||||||||||
電子配置 | [Rn] 7s2 | ||||||||||||||||||||||||||||||
電子殻 | 2, 8, 18, 32, 18, 8, 2(画像) | ||||||||||||||||||||||||||||||
物理特性 | |||||||||||||||||||||||||||||||
相 | 固体 | ||||||||||||||||||||||||||||||
密度(室温付近) | 5.5 g/cm3 | ||||||||||||||||||||||||||||||
融点 | 973 K, 700 °C, 1292 °F | ||||||||||||||||||||||||||||||
沸点 | 2010 K, 1737 °C, 3159 °F | ||||||||||||||||||||||||||||||
融解熱 | 8.5 kJ/mol | ||||||||||||||||||||||||||||||
蒸発熱 | 113 kJ/mol | ||||||||||||||||||||||||||||||
蒸気圧 | |||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
原子特性 | |||||||||||||||||||||||||||||||
酸化数 | 2(強塩基性酸化物) | ||||||||||||||||||||||||||||||
電気陰性度 | 0.9(ポーリングの値) | ||||||||||||||||||||||||||||||
イオン化エネルギー | 第1: 509.3 kJ/mol | ||||||||||||||||||||||||||||||
第2: 979.0 kJ/mol | |||||||||||||||||||||||||||||||
共有結合半径 | 221 ± 2 pm | ||||||||||||||||||||||||||||||
ファンデルワールス半径 | 283 pm | ||||||||||||||||||||||||||||||
その他 | |||||||||||||||||||||||||||||||
結晶構造 | 体心立方 | ||||||||||||||||||||||||||||||
磁性 | 反磁性 | ||||||||||||||||||||||||||||||
電気抵抗率 | (20 °C) 1 μΩ⋅m | ||||||||||||||||||||||||||||||
熱伝導率 | (300 K) 18.6 W/(m⋅K) | ||||||||||||||||||||||||||||||
CAS登録番号 | 7440-14-4 | ||||||||||||||||||||||||||||||
主な同位体 | |||||||||||||||||||||||||||||||
詳細はラジウムの同位体を参照 | |||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
ラジウム(独: Radium [ˈraːdi̯ʊm]、英: radium [ˈreɪdiəm])は、原子番号88の元素。元素記号は Ra。アルカリ土類金属の一つ。
特徴
安定同位体は存在しない。天然には4種類の同位体が存在する。白色の金属で、比重はおよそ5–6、融点は700 °C、沸点は1140 °C。常温、常圧での安定な結晶構造は体心立方構造 (BCC)。反応性は強く、水と激しく反応し、酸に易溶。空気中で簡単に酸化され暗所で青白く光る。原子価は2価。化学的性質などはバリウムに似る。炎色反応は洋紅色。
ラジウムがアルファ崩壊してラドンになる。ラジウムの持つ放射能を元にキュリー(記号 Ci)という単位が定義され、かつては放射能の単位として用いられていた。現在、放射能の単位はベクレル(記号 Bq)を使用することになっており、1 Ci = 3.7×1010 Bqである。なお、ラジウム224、226、228は WHO の下部機関 IARC より発癌性がある (Type1) と勧告されている。
ラジウムそのものの崩壊ではアルファ線しか放出されないが、その後の娘核種の崩壊でベータ線やガンマ線なども放出される。
放射線を出しているため、ラテン語の radius にちなんで命名された[1]。
歴史
1898年に、ピエール・キュリー、マリ・キュリー夫妻らが放射線の測定と分光学的測定を行うことでラジウムを発見した。彼らはピッチブレンド(閃ウラン鉱)から元素の分離を行なっていた際に、バリウムと似た化学的挙動を示す部分に高い放射能が存在することを見出した。彼らはピッチブレンドの中に新たな物質が存在すると考え、この新たな物質をバリウムから分離、精製した。この操作によってリン光を発する塩化ラジウムが分離された。これによりラジウムの存在が示された。夫であるピエール・キュリーの死後もマリ・キュリーはラジウムの研究を続け塩化ラジウムの電気分解から金属ラジウムを得ることに成功した[1]。
日本における歴史
1903年、田中舘愛橘により初めて日本にラジウムが持ち込まれた。また翌年の1904年には、三浦謹之助が「ラヂウムに就て」という神経学雑誌を発表した。また彼は、東京医学会例会において、ラジウムを用いた治療について言及した。1906年には長岡半太郎がラジウムの特徴について紹介している[2]。
利用
以前は、放射線源として放射線治療に使用されたが、現在は工業的な用途はほとんどない[3]。また、1960年代以前は時計の文字盤などの夜光塗料として利用されていた。当時、ラジウムは時計に手作業で塗られていたが、作業を行う女性労働者は放射能を持つラジウムの付いた筆をなめて穂先を整えていた。これにより時計の生産に関わる女性たちの間でラジウムが原因と思われる病気が多発し、次々に死亡した。時計工場の女性労働者は訴訟を起こし、ラジウム・ガールズと呼ばれた。この訴訟は従業員が会社を訴える権利を確立させた最初の例となり、労働法史上画期的な出来事とされている[4]。
223Raは、骨転移のある去勢抵抗性前立腺癌に用いられる[5]。
ラジウムに関連した事件
- 1920年代から1930年代にかけてアメリカで起こった、夜光塗料を時計の文字盤に塗る作業に関わった女性工場労働者が放射線障害になった事件とその訴訟。ラジウム・ガールズを参照。
- 1920年代にから1930年代にかけてアメリカ合衆国で販売された「ラディトール」は、ラジウムを水に溶解させた特許薬であり、服用した人物に健康被害をもたらした。同国のソーシャライトで実業家のエベン・バイヤーズは本薬による健康被害を受け、死去している。
- 2011年10月、日本東京都世田谷区の木造民家の床下からラジウム226と推定される物質が発見された。時計用の夜光塗料として使われていたものと見られる。この床下のラジウムは毎時600 μSv(年間5256 mSv)であった。ラジウムが発見された場合の処分費用の高額さとその負担が問題となっている[6]。
- 2014年6月、スイス北部ビエンヌの廃棄物処理場に、120 kg分に及ぶラジウムの廃棄物が持ち込まれていたことが発覚。場所によっては、放射線量が毎時300 μSvとなる場所もあった。廃棄物は、道路工事の最中に見つかったもので、時計の夜光塗料に用いられていたものと推測されている。夜光塗料としてのラジウムは、スイスでは1963年に使用が禁止されていたことから、住民に不安を与えないように事実が1年間隠匿されていた。
- 厚生労働省の『放射性物質等の運搬に関する基準(平成十七年十一月二十四日厚生労働省告示第四百九十一号)』は「容器に封入することを要する放射性物質」の基準値を定めているが[7]、他方、ラジウム223によって汚染された物の放射性物質の濃度基準は、2016年現在、『放射性物質等の運搬に関する基準の一部を改正する件(案)』により基準値の見直しが行われている[8]。
同位体
脚注
- ^ a b 桜井弘『元素111の新知識』講談社、1998年、356-357頁。ISBN 4-06-257192-7。
- ^ 稲本一夫(1998)『初期のラジウム利用の歴史』、p137、138。
- ^ 「Newton別冊ありとあらゆる「物質」の基礎がわかる完全図解周期表第2版」 159ページ 2015年10月1日閲覧
- ^ 『世界で一番美しい元素図鑑』セオドア・グレイ著 創元社
- ^ ゾーフィゴ静注
- ^ 佐々木康彦 (2011年11月16日). “ラジウム処分最終費用は数千万円に及ぶ可能性も、「ごみの不法投棄と同じ扱いになる」(文部科学省)ため地権者が全額負担ってまさかの展開に”. BLOGOS. 2013年5月27日時点のオリジナルよりアーカイブ。2016年1月9日閲覧。
- ^ 厚生労働省『放射性物質等の運搬に関する基準』、2005年11月24日。
- ^ 厚生労働省『放射性物質等の運搬に関する基準の一部を改正する件(案)に関する意見の募集について』、2015年12月28日。
関連項目
外部リンク
ラジウム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/04 09:12 UTC 版)
ポロニウムは化学的性質がビスマスに近く、鉱石の中でビスマス様物質を探すことで比較的簡単にたどりついた。しかしラジウムの発見は一筋縄ではいかなかった。化学的性質が近い元素にバリウムがあるが、鉱石にはバリウムとラジウムの両方が含まれていた。1898年の時点で夫妻はラジウムの痕跡を掴んではいたが、純粋な状態で充分な量を確保するには至らなかった。 劣悪な環境と過酷な作業、逼迫した家計を賄うための教職の多忙は夫妻の健康状態にも悪影響を及ぼし、ピエールは精製作業を一時中断すべきとも考えた。しかしマリは少しずつ着々と進む作業に希望を見出していた。1トンのピッチブレンドから分離精製できたラジウム塩化物は0.1グラムにしかならなかったが、放射性元素は着々と濃縮され、やがて試験管や蒸発皿から発光が見られるようになっていった。マリはこれを「妖精のような光」と形容した。1902年3月には濃縮に効果的な試薬を発見し、これを用いて精製した試料のスペクトルがラジウム固有のものであることを突き止め、夫妻は純粋ラジウム塩の青い光に感動を覚えた。夫妻は、有意な純粋ラジウム塩を得るまでに11トンのピッチブレンドを処理した。 しかしこの頃、度重なる不幸が夫妻を襲う。1902年5月、マリの父ブワディスカ危篤の知らせが届き、帰郷の最中に訃報を受けた。彼女は親不孝な自分を責めたが、晩年のブワディスカは届くマリの論文を楽しみに読み、特に3月のラジウム精製成功の手紙には大いに喜び、娘を誇りに思っていた。一方のピエールに友人たちはアドバイスを送りアカデミー会員になるよう薦めたが、7月の選挙で落選する。しかしこのような活動も栄誉ではなく研究のためのものであった。レジオンドヌール勲章の候補となった際には研究活動に寄与しないと断っている。夫妻は研究に戻るが体に変調をきたし、ピエールはリウマチを悪化させて度々発作に苦しみ、マリは神経を衰えさせ睡眠時遊行症を起こすようになった。翌1903年には待望の第二子を流産してしまい、マリは悲しみにくれた。 このような苦境の中で進められた研究結果を夫妻は逐一学会に知らしめ、1899年から1904年にかけて32の研究発表を行った。それらは他の学者たちに放射能や放射性元素に対する認識に刷新を迫り、研究に向かわせた。放射性元素の追究はいくつかの同位体発見につながり、さらにウィリアム・ラムゼーとフレデリック・ソディのラジウム崩壊によるヘリウム発生の確認、アーネスト・ラザフォードとソディの元素変換説などがもたらされた。これらは、当時の概念であった「元素は不変」という考え方に変革を迫り、原子物理学に一足飛びの進歩をもたらした。 さらに、1900年にドイツの医学者ヴァルクホッフ(ドイツ語版)とギーゼル(英語版)が、放射線が生物組織に影響を与えるという報告がなされた。早速ピエールはラジウムを腕に貼り付け、火傷のような損傷を確認した。医学教授らとの協同研究の結果、細胞を破壊する効果が確認され、皮膚疾患や悪性腫瘍を治療する可能性が示唆された。これは後にキュリー療法と呼ばれる。こうしてラジウムは「妙薬」として知られるようになった。第一次世界大戦後、科学者の間で放射線被曝(照射線量)による人体影響への危険が徐々にではあるが認知されるようになった。当時の放射性物質を取り扱う科学者らは、鉛を用いて放射線を遮蔽し、白衣は使い捨てるなどの対策を採っており、マリも研究所員らに手袋を用いるように厳しく指導していたが、当の本人は放射性物質を素手で扱うことが多く、防護対策を殆ど行わなかった。そのためマリの手はラジウム火傷の痕だらけで、干しスモモのような皺が残っていたという。 新元素ラジウムは、学問対象にとどまらず、産業分野でも有用性が次々と明らかになった。キュリー夫妻は、ラジウム精製法に対する特許を取得せず公開した。これは珍しいことだが、そのために他の科学者たちは何の妨げもなくラジウムを精製使用することができた。フランスの実業家アルメ・ド・リール(英語版、フランス語版)(Emile Armet de Lisle)はラジウムの工業的生産に乗り出し、夫妻の協力を仰ぎ、医療分野への提供を始めた。ラジウムは世界で最も高価な物質となった。ラジウム精製法の特許を取得しなかった理由として、マリは「人生最大の報酬とは、知的活動そのものである」と答えている。
※この「ラジウム」の解説は、「マリ・キュリー」の解説の一部です。
「ラジウム」を含む「マリ・キュリー」の記事については、「マリ・キュリー」の概要を参照ください。
ラジウム
「ラジウム」の例文・使い方・用例・文例
- 誰によってラジウムは発見されましたか。
- 誰がラジウムを発見しましたか。
- ラジウムを発見したのはマリー・キュリーであった。
- キュリー夫妻によるラジウムの発見.
- ラジウムは素人が扱うと危険です.
- ラジウム鉱泉
- ラジウム治療
- 放射線治療におけるラジウムの使用
- パラジウムの閉塞された水素の多い量
- 英国の化学者、物理学者で、パラジウムとロジウムを発見し、静電気と電流が同じものであることを示した(1766年−1828年)
- ラジウムの崩壊で形成された放射性ガスの要素
- 通常、プラチナ、ニッケルまたはパラジウムの入った、淡い色の金合金
- 酸化ウラン、微量のラジウム、トリウム、ポロニウム、鉛、およびヘリウムから成る鉱物
- パラジウムという金属元素
- ラジウムという放射性元素
- カラジウムという植物
- パラジウムを触媒とするクロスカップリングを開発したことが彼らの受賞理由だった。
ラジウムと同じ種類の言葉
- ラジウムのページへのリンク