aluminium
「aluminium」の意味・「aluminium」とは
「aluminium」は、日本語で「アルミニウム」と訳される。これは化学元素の一つで、記号はAl、原子番号は13である。自然界に豊富に存在し、軽くて錆びにくい特性から、飛行機や自動車の製造、建築材料、日用品など、様々な分野で利用されている。また、電気伝導性に優れているため、電線にも使用される。「aluminium」の発音・読み方
「aluminium」の発音は、IPA表記では /ˌæl.jʊˈmɪ.ni.əm/ となる。IPAのカタカナ読みは「アルユミニウム」で、日本人が発音するカタカナ英語では「アルミニウム」と読む。この単語は発音によって意味や品詞が変わる単語ではない。「aluminium」の定義を英語で解説
「Aluminium」 is a chemical element with the symbol Al and atomic number 13. It is a silvery-white, soft, non-magnetic and ductile metal in the boron group. By mass, aluminium makes up about 8% of the Earth's crust, where it is the third most abundant element (after oxygen and silicon) and also the most abundant metal.「aluminium」の類語
「aluminium」の類語としては、「aluminum」がある。これは主にアメリカ英語で使用される表現で、「aluminium」と同じ意味である。ただし、発音は異なり、IPA表記では /əˈluːmɪnəm/ となる。「aluminium」に関連する用語・表現
「aluminium」に関連する用語としては、「aluminium foil」(アルミホイル)、「aluminium can」(アルミ缶)、「aluminium alloy」(アルミ合金)などがある。これらは、アルミニウムの特性を活かした製品や素材を指す。「aluminium」の例文
1. Aluminium is a good conductor of electricity.(アルミニウムは電気を良く導く)2. The plane is made of aluminium.(その飛行機はアルミニウム製だ)
3. Aluminium foil is used in cooking.(アルミホイルは料理に使われる)
4. The aluminium can is recyclable.(アルミ缶はリサイクル可能だ)
5. The bridge is constructed with aluminium alloy.(その橋はアルミ合金で建設されている)
6. Aluminium is the most abundant metal in the Earth's crust.(アルミニウムは地殻中で最も豊富な金属だ)
7. The wires are made of aluminium.(その電線はアルミニウム製だ)
8. Aluminium is resistant to corrosion.(アルミニウムは腐食に強い)
9. The car's body is made of aluminium.(その車のボディはアルミニウム製だ)
10. Aluminium is lightweight and durable.(アルミニウムは軽量で耐久性がある)
アルミニウム【aluminium】
【アルミニウム】(あるみにうむ)
元素記号Al、原子番号13、比重2.7の非鉄金属。
日本語では単に「アルミ」と呼ばれる事の方が多い。
鉄に比べて軽く、空気中で劣化しにくく、加工しやすい。
反面、純粋なアルミニウムは非常に柔らかく軽いため重工業用途には向かない。
しかし合金としたり熱処理を行う事で鋼に劣らない引っ張り強度を持たせる事が可能である。
軽さのわりに強度に優れている為、軽装甲車両や航空機に用いられた時期もある。
しかし対弾性は明らかに鋼に劣り、融点が低いため熱で容易に劣化する。
これはエンジン駆動機器や火災の想定される構造物では致命的な弱点であると言える。
このため、高い安全性と耐久性を求められる分野でのシェアは炭素繊維強化樹脂に奪われつつある。
一方で、酸化性自体は非常に強い事から、粉末にして表面積を増大させれば爆発物や燃焼剤としての利用法が得られる。
軍事用途としては、酸化鉄と反応させて強い光と熱を発する「テルミット」反応を用いた各種手榴弾や、スラリー爆薬等の強力な爆薬の材料として需要がある。
技術的にも経済的にも非常にリサイクル性が高いため、民生用の素材としては今でも広く利用されている。
アルミニウム(Al)
軽量で、耐食性(←酸化被膜による)があり、快削性に優れる為、アルミニウムのままだけでなく、合金などの形でも広く利用されている。比較的良い熱伝導性、電気伝導性を持つ金属。
ステンレス鋼に添加されると、強力なフェライト化元素で、Ni等と金属間化合物をつくり、析出硬化し強度を増す。
アルミニウム(Al)
アルミニウム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/12 00:41 UTC 版)
| |||||||||||||||||||||||||
外見 | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() ![]() アルミニウムのスペクトル線 | |||||||||||||||||||||||||
一般特性 | |||||||||||||||||||||||||
名称, 記号, 番号 | アルミニウム, Al, 13 | ||||||||||||||||||||||||
分類 | 貧金属 | ||||||||||||||||||||||||
族, 周期, ブロック | 13, 3, p | ||||||||||||||||||||||||
原子量 | 26.9815386(13) | ||||||||||||||||||||||||
電子配置 | [Ne] 3s2 3p1 | ||||||||||||||||||||||||
電子殻 | 2, 8, 3(画像) | ||||||||||||||||||||||||
物理特性 | |||||||||||||||||||||||||
相 | 固体 | ||||||||||||||||||||||||
密度(室温付近) | 2.70 g/cm3 | ||||||||||||||||||||||||
融点での液体密度 | 2.375 g/cm3 | ||||||||||||||||||||||||
融点 | 933.47 K, 660.32 °C, 1220.58 °F | ||||||||||||||||||||||||
沸点 | 2792 K, 2519 °C, 4566 °F | ||||||||||||||||||||||||
融解熱 | 10.71 kJ/mol | ||||||||||||||||||||||||
蒸発熱 | 294.0 kJ/mol | ||||||||||||||||||||||||
熱容量 | (25 °C) 24.200 J/(mol·K) | ||||||||||||||||||||||||
蒸気圧 | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
原子特性 | |||||||||||||||||||||||||
酸化数 | 3, 2, 1 (両性酸化物) | ||||||||||||||||||||||||
電気陰性度 | 1.61(ポーリングの値) | ||||||||||||||||||||||||
イオン化エネルギー | 第1: 577.5 kJ/mol | ||||||||||||||||||||||||
第2: 1816.7 kJ/mol | |||||||||||||||||||||||||
第3: 2744.8 kJ/mol | |||||||||||||||||||||||||
原子半径 | 143 pm | ||||||||||||||||||||||||
共有結合半径 | 121±4 pm | ||||||||||||||||||||||||
ファンデルワールス半径 | 184 pm | ||||||||||||||||||||||||
その他 | |||||||||||||||||||||||||
結晶構造 | 面心立方格子構造 | ||||||||||||||||||||||||
磁性 | 常磁性[1] | ||||||||||||||||||||||||
電気抵抗率 | (20 °C) 28.2 nΩ⋅m | ||||||||||||||||||||||||
熱伝導率 | (300 K) 237 W/(m⋅K) | ||||||||||||||||||||||||
熱膨張率 | (25 °C) 23.1 μm/(m⋅K) | ||||||||||||||||||||||||
音の伝わる速さ (微細ロッド) |
(r.t.) (rolled) 5000 m/s | ||||||||||||||||||||||||
ヤング率 | 70 GPa | ||||||||||||||||||||||||
剛性率 | 26 GPa | ||||||||||||||||||||||||
体積弾性率 | 76 GPa | ||||||||||||||||||||||||
ポアソン比 | 0.35 | ||||||||||||||||||||||||
モース硬度 | 2.75 | ||||||||||||||||||||||||
ビッカース硬度 | 167 MPa | ||||||||||||||||||||||||
ブリネル硬度 | 245 MPa | ||||||||||||||||||||||||
CAS登録番号 | 7429-90-5 | ||||||||||||||||||||||||
主な同位体 | |||||||||||||||||||||||||
詳細はアルミニウムの同位体を参照 | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
アルミニウム(英: aluminium, 米: aluminum[注 1], 羅: alūminium[3])は、記号Al、原子番号13の化学元素である。アルミニウムは他の一般的な金属よりも密度が低く、鋼鉄の約3分の1である。酸素との親和性が高く、空気に触れると表面に酸化物の保護膜が形成される。外観は銀に似ており、色も光を反射する性質も強い。軟らかく、非磁性で延性がある。アルミニウムの同位体組成はほぼ100%が安定同位体27Alであり、この同位体は宇宙で12番目に多い核種である。26Alの放射能は放射年代測定に利用される。
化学的には、アルミニウムはホウ素族の後遷移金属であり、他のホウ素族元素同様、主に酸化数+3の化合物を形成する。アルミニウム陽イオンAl3+はイオン半径が小さく、強く正に帯電しているため分極性が高く、アルミニウムが形成する結合は共有結合になる傾向がある。酸素との親和性が高いため、天然には酸化物の形でみられることが多い。このため、地球上ではアルミニウムはマントルよりも地殻を構成する岩石中に主に存在し、地殻中における存在度は酸素とケイ素に次ぐ第3位を占める。遊離金属の形でみられることはほぼ皆無である。
アルミニウムは、1825年にデンマークの物理学者ハンス・クリスティアン・エルステッドによって発見された。アルミニウムが最初に工業生産されたのは1856年であり、フランスの化学者アンリ・エティエンヌ・サント=クレール・ドビーユによる。1886年にフランスのポール・エルーとアメリカのチャールズ・マーティン・ホールがそれぞれ独自に開発したホール・エルー法により大量生産法が確立され、アルミニウムは一般に広く普及し、産業や日常生活で広く使われるようになった。第一次、第二次世界大戦においては、アルミニウムは航空にとって重要な戦略資源となった。1954年には、アルミニウムの生産量は銅を抜き、最も多く生産される非鉄金属となった。21世紀におけるアルミニウムの用途は、主に輸送、エンジニアリング、建設、包装が占める。
環境中に広く存在するため、生物学的な役割をもつ可能性が考えられ、現在も研究が続いているが、これまでにアルミニウム塩を代謝に用いる生物は知られていない。ただし、動植物は高いアルミニウム耐性を持つことが知られる。
名称
軽銀(けいぎん)、礬素(ばんそ)とも呼ばれる。軽銀は、軽いことと、外見が銀に似ていることにちなむ。礬素は、ミョウバン(明礬)にちなむ[4]。
アルミニウムは、化合物のミョウバン(羅: alumen、アルーメン)にちなみ、イギリスの化学者ハンフリー・デービーらによって命名された[5][2]。
俗にアルミまたはニュームとも略される[5]。
単体の性質
単体は銀白色の金属で、常温常圧で高い熱伝導性・電気伝導性を持ち、加工性がよく、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ[6]。
単体は常温常圧では良好な熱伝導性・電気伝導性を持つ。融点は660.32 °C、沸点は2519 °C(別の報告もある)。密度は2.7 g/cm3で、金属としては軽い。常温における安定相は面心立方格子構造をとる。酸やアルカリに侵されやすいが、空気中では表面に酸化アルミニウムAl2O3の膜ができ、内部は侵されにくくなる。この保護現象は酸化物イオンO2−のイオン半径(124 pm)とアルミニウムの原子半径(143 pm)が近く、アルミニウムイオンAl3+(68 pm)が酸化物の表面構造の隙間にすっぽり収まることが深く関係している。また濃硝酸に対しても表面に酸化被膜を生じ反応の進行は停止する(不動態)[7][8]。陽極酸化による酸化被膜はアルマイトとも呼ばれる。
化学的性質
アルミニウムは両性金属で、酸にも塩基にも溶解する。塩基性の水溶液では、以下の反応によって水が還元されて水素を発生する。
アルミニウムの原料となるボーキサイト。赤い色をしているのは、中に含まれている鉄分のためである アルミニウムは、鉱石のボーキサイトを原料としてホール・エルー法で生産されるのが一般的である。ボーキサイトを水酸化ナトリウムで処理し、アルミナ(酸化アルミニウム)を取り出したあと、氷晶石(ヘキサフルオロアルミン酸ナトリウム、Na3AlF6)とともに溶融し電気分解を行う。
したがって、アルミニウムを作るには大量の電力が消費されることから「電気の缶詰」と呼ばれる。ちなみに、ホール・エルー法での純度は約98 %であるため、より高純度なアルミニウムを得るには三層電解法を使う。
アルミニウム1トンを生産するために消費される、材料および電力は以下の通りである[9][11]。なお、1トンあたりの電力使用量は銅で1200 kW⋅h、亜鉛で4000 kW⋅hであり[12]、アルミニウムの製錬には銅の約11倍、亜鉛の約3.5倍の電力が必要となる計算になる。
- アルミナ 1.96トン(ボーキサイト 4トン)
- 氷晶石 0.07トン
- 炭素陽極 0.5トン
- 電力 13–14 MW⋅h
電力価格が高いためコスト競争に弱い[11]日本国内のアルミニウム製錬事業は、オイルショック後採算困難になり、大部分は国外に拠点が移った[9]。日本国内で原石(ボーキサイト)から製品まで一貫生産を行っていたのは、自前の水力発電所により自家発電を行っているため、低価格の電力が入手可能な日本軽金属(蒲原製造所・静岡市清水区)のみであったが、設備の老朽化と採算性の理由で2014年3月閉鎖された[13]。昭和電工社長の鈴木治雄は、座談会において「日本で製錬を行うのは、北海道でサトウキビを作るようなもの」と述べており[14]、いかに日本で製錬した場合の費用が高いかを比喩的に表現している。
順位 国 アルミニウム
生産量
(万トン)— 世界合計 4930[15] 1 中国
2330[15] 2 ロシア
350[15] 3 カナダ
294[15] 4 アラブ首長国連邦
240[15] 5 インド
210[15] 6 アメリカ合衆国
172[15] 7 オーストラリア
168[15] 8 ノルウェー
120[15] 9 ブラジル
96[15] 10 バーレーン
93[15] 11 アイスランド
81[15] 12 南アフリカ共和国
73.5[15] 13 カタール
61[15] 14 モザンビーク
56[15] 15 サウジアラビア
50[15] 15 ドイツ
50[15] 16 アルゼンチン
42.5 — その他 444[15] アルミニウムの生産量は2014年時点で4930万トンに及ぶ。中国が約40 %を生産し、これにロシア、カナダを加えた3か国で生産量の過半数を占める。中国、ロシアはボーキサイト原産国でもある。ほかのボーキサイト原産国であるアメリカ、オーストラリア、ブラジル、インドも世界生産量のシェア10位以内に含まれる。一方で、ボーキサイトの世界4位の生産国であるギニアや同第5位のジャマイカでまったくアルミニウムが生産されていないように、ボーキサイトの生産とアルミニウムの精練工場との間にはそれほど強い関連性はない。
これに対し、電力供給とアルミニウム製錬工場との間には強い相関性がある。アルミニウムは製錬に非常に多くの電力を消費するため、ボーキサイトからの精練は電力の安い国で行われる傾向が強い。アラブ首長国連邦やカタールは豊富な石油を元にした火力発電で、またカナダやノルウェーは地形を生かした水力発電で、アイスランドは水力発電と地熱発電によっていずれも電力が安価であるため、アルミニウムの大生産国となっている。14位のモザンビークは、カホラ・バッサ・ダムの豊富な電力に目をつけたBHPグループや三菱商事が製錬会社としてモザール社を設立し、2000年に工場が稼働し始めたことで大生産国となった。ここで製錬されたアルミニウムはモザンビークの総輸出額の50 %を占め[16]、モザンビークの基幹産業として同国の経済成長を支えている。
アルミニウムの消費量も中国が飛び抜けて多く、2014年には2406万トンを消費して、全世界生産量5005万トンのほぼ半分を消費している。消費量は次いで米国が多く、さらにドイツ、日本と続く[17]。
アルミニウム生産企業としては、カナダのリオ・ティント・アルキャン、ロシアのルサール(ロシア・アルミニウム)、アメリカのアルコア、中国の中国アルミニウムなどが特に大きな生産企業である。日本国内ではすでに精練は行われていないが、圧延や加工に関しては地金を海外から輸入したうえで盛んに行われており、日本軽金属やUACJ、神戸製鋼などがおもなメーカーとなっている。
電力を必要としない生産方法
アルミニウムは電気分解以外の手法でも製造が可能である。たとえばアルミナを2000 °C以下で炭素と反応させ、炭化アルミニウムを生成させる。これを2200 °C以上の高温部へ移動させ、今度はアルミナと反応させて金属アルミニウムと一酸化炭素に分離させる[18]。
化学式としては以下の通りである。
1円硬貨。純アルミニウムである


20世紀のうちにアルミニウム及びそれを主体とする合金は鉄鋼材に次ぐ主要金属材料としての地位を確立している。日用品も多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成するおもな元素のひとつである。自然アルミニウム(Aluminum、Native Aluminum)というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、上述のとおり製錬にも大きなエネルギーを必要とすることから産業的に広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。
アルミニウムの比重は鉄の3分の1程度と軽量であるために利用しやすく、また、軟らかくて展性も高いなど加工しやすい性質を持っており、さらに表面にできる酸化皮膜のためにイオン化傾向が大きい割には耐食性もあることから、一円硬貨やアルミ箔、缶(アルミ缶)、鍋、外構、エクステリア、建築物の外壁、道路標識、ガソリンエンジンのシリンダーブロック、自転車のフレームやリム、パソコンや家電製品の筐体など、さまざまな用途に使用されている。ただし大抵はアルミニウム合金としての利用であり、1円硬貨のようなアルミニウム100 %のものはむしろ稀な存在である。代表的なアルミニウム合金であるジュラルミンは航空機材料などに用いられているが、金属疲労に弱く、腐食しやすいという欠点を持つため、アロジン(クロメート処理)やジンククロメートで表面を保護し、定期的な点検で腐食部を早期に発見する体制を取ることが求められる。
2014年度において、日本のアルミニウム用途でもっとも大きかった用途は輸送用機械の製造であり、40.1 %を占める。次いでアルミサッシなどの建築用途が12.9 %、アルミ缶やアルミ箔などの容器包装用途が10.6 %を占め、この3分野がおもなアルミニウムの用途であるといえる[25]。
輸送用機械
軽量で加工性もよいことから、軽さと強度の両立のため部材形状の工夫も求められる航空機ではアルミ合金が主流となった。冷戦中盤あたりまで、塗装まで削って軽量化したアルミの銀色の輝きは高速航空機の象徴であった(ただし20世紀末頃からさらなる性能向上の要求のため炭素繊維複合材料やチタン合金等の新素材の割合が増えつつある)。鉄道車両でも新幹線電車をはじめとして特急型電車や通勤型電車などでアルミ車体の採用例も多い。押し出し材を使って長大な部材を一体成型し、さらに連続溶接組立する低コスト化量産法が確立され、同一断面を保った16–25 mに及ぶ車体を持つ鉄道車両では、生産性の面でメリットが大きい。なお、一時期自動車も航空機材料に倣うかたちでアルミ化の取り組みがあったが、一部メーカーの高級車やスポーツカーなど特殊な車種での導入に留まり、費用対効果を両立させるため、現在はアルミではなくハイテン材料(高張力鋼)の適用が進み、また炭素繊維の適用も始まっている[26]。軽量さが要求される高速船でもアルミが船体材料に選択されることがある。アルミ合金は軍事分野では装甲車輌や戦闘艦にも応用されているが、鉄鋼に比べて火災時の高熱や被弾に弱いため、軽量さを求められる小型の艦船や、自走砲など直接敵と交戦することを想定しない装甲車輌での使用が主流である。
建材
構造材としての使用もある(アルミニウム構造)が、窓枠(アルミサッシ)やフェンス等、外構での使用が多い。工場での規格集中生産により高い精度で加工されており、また軽量であるため、建付けや現場での組み立てやすさ、基本的な耐候性が優秀で、1960年代以降急速に普及した。しかし、断熱性の問題から窓ガラスともども結露を生じやすく、近年は代替品として樹脂サッシや現代化された木製サッシが増えている[27]。
導電体
高圧送電線にもアルミニウム線が使用される。銅に比べ単位体積あたりの電気伝導度は劣るが、密度が低いため銅線よりも軽量に抑えながら断面積をより大きく取る(太くする)ことができ、単位質量あたりの電気伝導度で優り材料費でもほぼ拮抗する。このため支柱(送電鉄塔)のスパンが大きくなる高圧送電線の材料として有利である。
粉末
粉末になったアルミニウムは可燃物であり、粉塵爆発を起こす場合がある。アルミニウム粉は燃焼熱が大きく、燃焼するときにガスを生じないため熱が集積して高温となり、強い白色の光を発する。これを利用して火薬類に発熱剤として添加される。スペースシャトルの固体燃料補助ロケットでも燃料として使用された。アルミニウム粉の性質は表面積の大きさによって左右されるため、等級は粒度ではなく重量あたりの表面積を示す水面拡散面積で表示される場合が多い。粒度で表示されるような粒の大きいものは粒状アルミニウム粉(アトマイズドアルミニウム粉)と呼んで区別することが多い。
スラリー爆薬などの水湿状態の火薬に混ぜると、アルミニウムの表面で以下のような反応が起きて発熱し、水素が発生する。このため、アルミニウム粉の火災には水をかけることは禁忌である。
アルミニウムの性質を研究したフリードリヒ・ヴェーラー(1856年) アルミニウムの歴史はミョウバン(明礬)の使用で始まった。ミョウバンの記述が最初に文書に残されたのは、紀元前5世紀の古代ギリシア歴史家ヘロドトスによる記述だった[33]。古代人にとって、ミョウバンは媒染剤、薬、そして(要塞を敵の放火から守るための)木の防火塗料であり、ウェットエッチングにも使用した[34]。十字軍以降、ミョウバンは国際貿易の商品のひとつになり[35]、ヨーロッパの織物業では欠かせない存在になった[36]。ミョウバンは15世紀中期にオスマン帝国が輸出関税を大幅に上げるまで、地中海東部からヨーロッパに輸出された。
ルネサンス初期まで、ミョウバンの性質は不明のままだった。1530年ごろ、スイスの物理学者パラケルススはミョウバンをウィトリオル(硫酸塩)と区別し、「ミョウバンの土の塩」であると主張した[注 2][37]。1595年、神聖ローマ帝国の医師、化学者アンドレアス・リバヴィウスはミョウバンと緑ウィトリオルと青ウィトリオルが同じ酸と違う土で構成されると示し[38]、ミョウバンを構成した未発見の土の名前については「アルミナ」を提唱した[37]。1722年、神聖ローマ帝国の化学者フリードリヒ・ホフマンはミョウバンの土が別の種類であると信じると宣言した[39]。1754年、神聖ローマ帝国の化学者アンドレアス・ジギスムント・マルクグラフは硫酸で粘土を煮て、続いてカリを加えることでミョウバンの土を生成した[39]。
1824年、デンマークの物理学者、化学者ハンス・クリスティアン・エルステッドは金属アルミニウムの作製に成功したと主張した。彼は無水の塩化アルミニウムとカリウム合金で化学反応を起こさせ、見た目がスズに似ている金属の塊を得た[40][41]。彼は1825年に結果を発表、新金属のサンプルを展示した。1826年、「アルミニウムは金属の光沢があり、やや灰色で、かなり緩やかに水を分解する」と記述した。1827年、ドイツの化学者フリードリヒ・ヴェーラーはエルステッドの実験を再び行ったが、アルミニウムは発見できなかった。彼は後にベルセリウスに手紙を書き、「エルステッドがアルミニウムの塊と仮定したものは確実にただのアルミニウムを含有するカリウムである」と述べた[注 3]。彼は続いて似たような実験を行った。その内容は無水の塩化アルミニウムとカリウムを混ぜることであり、アルミニウム粉末の作製に成功した[41]。彼は研究を続け、1845年に小さなアルミニウムの塊を作製することに成功、その物性を記述した。しかし、ヴェーラーの記述はそれが不純物を含むアルミニウムだったことを示している[43]。ヴェーラーなどほかの科学者がエルステッドの実験を再現できなかったことは、エルステッドが金属アルミニウムの発見者とされない理由のひとつになり、逆にヴェーラーは1845年の実験の成功とその詳細が発表されたことで金属アルミニウムの発見者とされた[44]。
フランスの化学者アンリ・エティエンヌ・サント=クレール・ドビーユは、1854年にパリ科学アカデミーでアルミニウムの工業製法を発表した[45]。塩化アルミニウムはヴェーラーが使ったカリウムよりも便利で安いナトリウムでも還元することができるのであった[46]。その後、アルミニウム棒は1855年のパリ万国博覧会で初めて公開展示された[47]。1856年、ドビーユは数人のパートナーとともにルーアンの製錬所で世界初のアルミニウム工業生産を開始した[45]。1855年から1859年にかけてアルミニウムの価格は1パウンド500米ドルから40ドルまでと、10分の1以下に下落した[48]。しかし、ドビーユの製法でもアルミニウムの純度の高さが足りず、サンプルによって性質が異なった[49]。
アルミニウムの最初の工業(大規模)生産法は1886年にフランスの工学者ポール・エルーとアメリカの工学者チャールズ・マーティン・ホールが開発したホール・エルー法である。ホール・エルー法がアルミナをアルミニウムに変える手法である一方、オーストリア=ハンガリー帝国の化学者カール・ヨーゼフ・バイヤーは1889年にバイヤー法というボーキサイト(鉄礬土)をアルミナに純化する手法を発見した。現代の金属アルミニウム生産はバイヤー法とホール・エルー法に基づく手法を使用している。1920年にはスウェーデンの化学者カール・ヴィルヘルム・セーデルベリ(Carl Wilhelm Söderberg)率いる研究チームがホール・エルー法を改良した。
同位体
→「アルミニウムの同位体」を参照市場
日本のアルミニウム地金輸入量は2021年は約280万トン、金額は7,463,024,528ドルで前年より60.9%上昇した。最大の輸入相手国はロシアである[50]。2021年から国際市場価格も変動しており、2022年ロシアのウクライナ侵攻のあとは3月に一時的な暴騰があった。
日本の造幣局も財務省理財局の貨幣回収準備資金として1円玉の原料であるアルミニウム地金を保管しており、理財局が毎年数回、売払いの入札公告を行っている[51][注 4]。
参考文献
- Drozdov, Andrey (2007). Aluminum: The Thirteenth Element. RUSAL Library. ISBN 978-5-91523-002-5
関連項目
脚注
注釈
- ^ 北米ではaluminumの綴りが用いられ、国際的にはaluminiumの綴りが用いられる[2]。
- ^ 訳注:ここでの「土」は西洋の四元素における土元素を意味する。
- ^ 原文:Was Oersted für einen Aluminiumklumpen hielt, ist ganz gewiß nichts anderes gewesen als ein aluminiumhaltiges Kalium.[42]。
- ^ 産金法(1937年)、金、銀又は白金等の取引等取締に関する件(1945年)、貴金属地金の取引等についての帳簿及び報告に関する政令(1949年)の廃止と同時に新設された貨幣回収準備資金に関する法律(2002年)により、財務大臣は貨幣回収準備資金に属する地金(引換貨幣及び回収貨幣を含む)を貨幣の製造に要する地金として造幣局に交付することができる。
出典
- ^ Magnetic susceptibility of the elements and inorganic compounds (PDF) (2004年3月24日時点のアーカイブ), in Handbook of Chemistry and Physics 81st edition, CRC press.
- ^ a b “Usage Notes: 'Aluminum' or 'Aluminium'? A tale of two spellings”. Merriam-Webster. Merriam-Webster. 2021年6月1日閲覧。
- ^ 杉山広樹「元素記号の由来(あんてな)」『化学と教育』第43巻第12号、日本化学会、1995年、782-785頁、doi:10.20665/kakyoshi.43.12_782。
- ^ 中尾善信、アルミニウムこぼればなし 軽金属 28巻 (1978) 4号 p.159-160, doi:10.2464/jilm.28.159
- ^ a b 鈴木治雄「アルミニウム語源雑考」『軽金属』第1953巻第8号、軽金属学会、1953年、11-12頁、doi:10.2464/jilm.1953.8_11。
- ^ 『理化学辞典』第5版、岩波書店
- ^ 『化学大辞典』 共立出版、1993年
- ^ a b c Geoff Rayner-Canham, Tina Overton 『レイナーキャナム 無機化学(原著第4版)』 西原寛・高木繁・森山広思訳、p.193-195、2009年、東京化学同人、ISBN 978-4-8079-0684-0
- ^ a b c 西川精一 『新版金属工学入門』 アグネ技術センター、2001年
- ^ JIKO. 8.応力ひずみ線図 材料力学 .
- ^ a b 亀山直人 『電気化学の理論と応用』 丸善、1955年
- ^ 「非鉄金属業界大研究」南正明 p88 産学社 2008年8月31日初版第1刷
- ^ 日軽金、アルミ製錬撤退 国内唯一の拠点を3月末で閉鎖 日経新聞 2014年3月14日
- ^ 『アルミニウム外史 下巻』p393
- ^ a b c d e f g h i j k l m n o p q r http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2015-alumi.pdf 2014年のデータ 2015年5月27日閲覧
- ^ 「モザンビークにおけるアルミニウム製錬事業 アルミ事業と地域の発展」 三菱商事 2015年6月19日閲覧
- ^ 「世界のアルミ産業」 日本アルミ協会 2015年6月19日閲覧
- ^ アルミナの炭素熱還元によるアルミニウムの製造方法及び反応装置(ekouhou.net)
- ^ アルミ工業の原料転換助成が初仕事(昭和16年12月5日 東京日日新聞)『昭和ニュース辞典第7巻 昭和14年-昭和16年』p226 昭和ニュース事典編纂委員会 毎日コミュニケーションズ刊 1994年
- ^ 高純度アルミニウム製造法(日本軽金属)
- ^ リサイクルについて アルミ缶リサイクル協会 2015年8月28日閲覧
- ^ 「商社のとりくみ 金属(アルミ)のリサイクル」 日本貿易会 2015年6月19日閲覧
- ^ 「図解入門よくわかる最新「鉄」の基本と仕組み 性質、技術、歴史、文化の基礎知識 性質と魅力」田中和明、株式会社秀和システム、2009年、ISBN 978-4-7980-2421-9、pp.147–148
- ^ “アルミニウム VISION 2050” (pdf). 日本アルミニウム協会 (2020年9月). 2024年4月29日閲覧。
- ^ 「用途別需要」 日本アルミ協会 2015年6月19日閲覧
- ^ ついに量産車へ、炭素繊維「鉄並み価格」視野で経済圏拡大 日本経済新聞 2014年11月19日
- ^ 低い断熱性なぜ放置、世界に遅れる「窓」後進国ニッポン 日本経済新聞 2014年11月7日
- ^ 「アルミニウムと健康」連絡協議会 ‐ Q7.透析脳症とアルツハイマー病の関係性は?-アルミニウムと健康Q&A
- ^ 「アルミニウムと健康」連絡協議会 ‐ よくわかる「アルミニウムと健康」基礎知識
- ^ Alzheimer's Society(2019) ‐ Metals, aluminium and dementia
- ^ 加藤秀正、平井英明、星野幸一 ほか、根系の発達に及ぼす土壌溶液のアルミニウム種の影響 日本土壌肥料学雑誌 76巻 (2005) 1号 p.1-8, doi:10.20710/dojo.76.1_1
- ^ 大澤裕樹、木本植物に顕著な高アルミニウム耐性の生理学的解析 日本森林学会大会発表データベース 第118回日本森林学会大会 セッションID: D25, doi:10.11519/jfsc.118.0.121.0
- ^ Drozdov 2007, p. 12.
- ^ Drozdov 2007, pp. 12–14.
- ^ Drozdov 2007, p. 16.
- ^ Clapham, John Harold; Power, Eileen Edna (1941). The Cambridge Economic History of Europe: From the Decline of the Roman Empire. CUP Archive. p. 207. ISBN 978-0-521-08710-0
- ^ a b Drozdov 2007, p. 25.
- ^ Weeks, Mary Elvira (1968). Discovery of the elements. 1 (7 ed.). Journal of chemical education. p. 187
- ^ a b Richards 1896, p. 2.
- ^ Royal Danish Academy of Sciences and Letters (1827) (デンマーク語). Det Kongelige Danske Videnskabernes Selskabs philosophiske og historiske afhandlinger [The philosophical and historical dissertations of the Royal Danish Science Society]. Popp. pp. XXV–XXVI
- ^ a b Wöhler, Friedrich (1827). “Ueber das Aluminium [About the aluminum]” (ドイツ語). Annalen der Physik und Chemie. 2 11: 146–161 .
- ^ Bjerrum, Niels (1926). “Die Entdeckung des Aluminiums”. Zeitschrift für Angewandte Chemie 39 (9): 316–317. doi:10.1002/ange.19260390907. ISSN 0044-8249.
- ^ Drozdov 2007, p. 38.
- ^ Light Metals: Aluminum, Magnesium and Titanium. 23. (1960). pp. 69–70
- ^ a b Drozdov 2007, p. 39.
- ^ Sainte-Claire Deville, H. E. (1859) (フランス語). De l'aluminium, ses propriétés, sa fabrication [Aluminum, its properties, its manufacture]. Paris: Mallet-Bachelier. オリジナルの30 April 2016時点におけるアーカイブ。
- ^ Karmarsch, C. (1864). “Fernerer Beitrag zur Geschichte des Aluminiums [Further report on the history of aluminum]” (ドイツ語). Polytechnisches Journal 171 (1): 49 .
- ^ Polmear, Ian (2005). Light Alloys: From Traditional Alloys to Nanocrystals. Butterworth-Heinemann. p. 15. ISBN 978-0-08-049610-8
- ^ Drozdov 2007, p. 46.
- ^ 日本貿易図鑑「アルミニウムの輸入(輸入額、輸入先、輸入量)」。
- ^ 財務省「地金の売払いスケジュール(地金の売払い見通し)」。
外部リンク
- アルミニウムに関する情報 - 厚生労働省
- アルミニウムの安全性について - 国立健康・栄養研究所
- (社)日本アルミニウム協会
- アルミニウムの誕生 -『科学映像館』より。1960年に日本軽金属(当時)の企画の下で制作された広報映画
- アルミの基礎知識(アルミニウムの世界) - 株式会社UACJ
- 『アルミニウム』 - コトバンク
アルミニウム(アルミ缶)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/08 15:20 UTC 版)
「リサイクル」の記事における「アルミニウム(アルミ缶)」の解説
アルミニウムは、地金を新造する際に「電気の缶詰」といわれるほど電力を消費するが、ボーキサイトからアルミニウム地金を生産する電力消費量と、アルミ缶をリサイクルしてアルミニウム地金を生産する場合を比較すると、わずか3%で済む(つまり97%もの電力の節約となる。但し、純粋なアルミニウムを再精錬した時の理論値である。別途、不純物除去のエネルギーが僅かに必要である。)。その量を電力に換算すると2019年度の場合は、70億kWhとなる。これは、全国にある住宅(約5,907万世帯)の約14日分の使用電力量に相当する。 こうした利点があるため、アルミニウムは日本国内において最もリサイクル化が進んでいる金属であり、アルミ缶のリサイクル率が94.0%(2020年度)にも達する。その為、アルミニウムはしばしば「リサイクルの優等生」と呼ばれる。更に、再びアルミ缶としてリサイクルされる割合は、約71.0%となっている。 また、融解時には空気中の窒素と反応して窒化アルミニウムAlNとして一部が失われる。 2Al + N2 → 2AlN この窒化物は融解時にるつぼの表面に浮かぶので捨てられるが、空気中の水分と徐々に反応してアンモニアを生じる。 AlN + 3H2O → Al(OH)3 + NH3 また、プルトップ部分は剛性を持たせるため、マグネシウムを加えた合金を使用している。そのためリサイクル時にはそれを酸化して除かねばならず無駄が生じる。
※この「アルミニウム(アルミ缶)」の解説は、「リサイクル」の解説の一部です。
「アルミニウム(アルミ缶)」を含む「リサイクル」の記事については、「リサイクル」の概要を参照ください。
アルミニウム
出典:『Wiktionary』 (2021/08/28 14:19 UTC 版)
名詞
アルミニウム
語源
発音(?)
- あ↗るみに↘うむ
翻訳
- アフリカーンス語: aluminium (af)
- アルバニア語: alumin (sq)
- アラビア語: ألومنيوم (ar) (ʾalumínyum) 男性
- アルメニア語: ալյումին (hy)
- アストゥリアス語: aluminiu (ast)
- アゼルバイジャン語: alüminium (az)
- バスク語: aluminioa (eu)
- ベラルーシ語: алюмі́ній (be) 男性
- ベンガル語: অ্যালুমিনিয়াম (bn) (æyāluminiẏām)
- ブルトン語: aluminiom (br) 男性
- ブルガリア語: алуми́ний (bg) 男性
- カタルーニャ語: alumini (ca)
- 中央メラナウ語: maniyem (mel)
- 中国語:
- チュヴァシュ語: алюмини (chv)
- コーンウォール語: alumynyum (cor)
- コルシカ語: alluminiu (cos)
- チェコ語: hliník (cs) 男性
- デンマーク語: aluminium (da) 中性
- オランダ語: aluminium (nl) 中性
- エルジャ語: люм (myv)
- 英語: aluminium (en), aluminum (en)
- エスペラント: aluminio (eo)
- エストニア語: alumiinium (et)
- フェロー語: aluminium (fo) 中性
- フィンランド語: alumiini (fi)
- フランス語: aluminium (fr) 男性
- フリウリ語: alumini (fur)
- ガリシア語: aluminio (gl)
- グルジア語: ალუმინი (ka)
- ドイツ語: Aluminium (de) 中性
- ギリシア語: αργίλιο (el), αλουμίνιο (el) 中性
- ハイチ語: aliminyòm (ht)
- ハワイ語: ‘Aluminuma (haw)
- ヘブライ語: אלומיניום (he) (alumínyum), חמרן (he) (ḥamran, ḥomran) 男性
- ヒンディー語: स्फटयातु (hi) (sfaṭayātu)
- ハンガリー語: alumínium (hu)
- アイスランド語: ál (is)
- イド語: aluminio (io)
- インドネシア語: aluminium (id)
- インターリングア: aluminium (ia)
- アイルランド語: alúmanam (ga)
- イタリア語: alluminio (it) 男性
- ジャワ語: alumunium (jv)
- カンナダ語: ಅಲ್ಯೂಮಿನಿಯಮ್ (kn)
- パンパンガ語: aluminiu (pam)
- カシューブ語: aluminijô (csb)
- カザフ語: алюминий (kk)
- クメール語: អាលុយមីញ៉ូម (km) (aaluymiiɲoom)
- 朝鮮語: 알루미늄 (ko), 반소 (ko) (礬素, banso)
- クルド語: bafûn (ku)
- ケルシュ方言: Allu (ksh)
- ラテン語: aluminium (la) 中性
- ラトヴィア語: alumīnijs (lv)
- リトアニア語: aliuminis (lt)
- ロジバン: jinmrmalume (jbo)
- 低地ドイツ語: aluminium (nds)
- ルクセンブルク語: Aluminium (lb)
- マケドニア語: алуминиум (mk)
- マレー語: aluminium (ms)
- マラヤーラム語: അലൂമിനിയം (ml)
- マルタ語: aluminju (mt)
- マン島語: ollymin (gv) 男性
- マラーティー語: ऍल्युमिनियम (mr) (ĕlyuminiyam)
- モンゴル語: хөнгөн (mn), хөнгөн цагааны (mn)
- ナヴァホ語: béésh ászólí (nv)
- ノルウェー語:
- ノヴィアル: aluminie (nov)
- オック語: alumini (oc)
- ペルシア語: آلومینیم (fa) (âluminiyom)
- ポーランド語: glin (pl) 男性, aluminium (pl) 男性
- ポルトガル語: alumínio (pt) 男性
- ケチュア語: ch'aqu q'illay (qu)
- ルーマニア語: aluminiu (ro) 中性
- ロシア語: алюми́ний (ru) 男性
- サンスクリット: स्फटयातु (sa) (sfaṭayātu)
- ロジバン: aluminium (stq)
- スコットランド・ゲール語: alùmanam (gd), almain (gd)
- クロアチア語:
- シチリア語: alluminiu (scn)
- スロヴァキア語: hliník (sk) 男性
- スロヴェニア語: aluminij (sl)
- スペイン語: aluminio (es) 男性
- スワヒリ語: alumini (sw)
- スウェーデン語: aluminium (sv) 中性
- タジク語: алюминий (tg)
- タミル語: அலூமீனியம் (ta)
- テルグ語: అల్యూమినియం (te)
- タイ語: อะลูมิเนียม (th) (àloomíniam), อะลูมินัม (th) (àloomínam)
- トルコ語: alüminyum (tr)
- ウクライナ語: алюмі́ній (uk) 男性
- ウズベク語: alyuminiy (uz)
- ヴェプス語: alüminii (vep)
- ベトナム語: nhốm (vi), nhôm (vi)
- ヴォラピュク: lalumin (vo)
- ウェールズ語: alwminiwm (cy)
- 西フリジア語: aluminium
- ヨルバ語: aluminiọmu (yo)
「アルミニウム」の例文・使い方・用例・文例
- 鍋はステンレスとアルミニウムの七重構造でできています。
- アルミニウム、マグネシウム、シリコンなどの粉末が爆発する。
- アルミニウムで覆う
- ミョウバンまたはアルミニウムを含んでいる
- アルミニウム缶をつぶす
- アルミニウムの基礎の硬貨
- アルミニウムまたはミョウバンに関する、あるいはそれらを含むさま
- 鋼鉄あるいはアルミニウム製の核反応の度合いを制御するために上げ下げする
- グループと見なされたアルミニウムのメーカー
- 米国の化学者で、アルミニウムをボーキサイトから作り出す経済的な方法を開発した(1863年−1914年)
- アルミニウムやプラチナのような物質は磁場で磁化されるが、磁場を取り去ると磁力が消失すること
- 2倍のアルミニウムの硫酸塩の白色結晶性:カリウム、アルミニウムの2倍の硫酸塩
- アルミニウムの白い水晶の二重硫酸塩:アルミニウムのアンモニウムの二重硫酸塩
- リン酸アルミニウムリチウムから成る、白色または灰色の鉱物
- ケイ酸塩チェーンと主にナトリウムとカルシウムとマグネシウムと鉄とアルミニウムの組合せを含んでいる類似した結晶構造による一群の鉱物
- 輝石に属する深緑色から黒色のガラス質の鉱物で、大量のアルミニウム、鉄、マグネシウムを含む
- マグネシウム、鉄、アルミニウム、シリコン、酸素から成る青色の鉱物
- アルミニウムとナトリウムのフッ化物から成る白色の鉱物
- 鉄の珪酸アルミニウムから成る深紅のガーネット
- 水酸化アルミニウムから成る白い結晶性鉱物
アルミニウムと同じ種類の言葉
「アルミニウム」に関係したコラム
-
銅は、熱や電気を伝導したり、腐食に耐えられるなどの特性から工業用の金属として用いられています。銅の主な用途は送電線や電気製品などが挙げられます。銅は、工業用金属としては鉄、アルミニウムに続く消費量です...
-
ETFの銘柄数は2012年9月の時点で約140あります。そして、いずれの銘柄にも価格の連動となる対象の商品があります。ここでは、ETFの銘柄をジャンルごとに紹介します。表の「コード」は株式コード、「市...
-
ETFの取引単位は銘柄により異なります。ETFの場合、取引単位は10株単位や100株単位であることが多いようです。また、価格が1万円前後の銘柄は1株単位、100円前後の銘柄は1,000株単位が多いよう...
- アルミニウムのページへのリンク