13
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/01/29 22:13 UTC 版)
ナビゲーションに移動 検索に移動| 12 ← 13 → 14 | |
|---|---|
| 素因数分解 | 13 (素数) |
| 二進法 | 1101 |
| 六進法 | 21 |
| 八進法 | 15 |
| 十二進法 | 11 |
| 十六進法 | D |
| 二十進法 | D |
| ローマ数字 | XIII |
| 漢数字 | 十三 |
| 大字 | 拾参 |
| 算木 | ![]() ![]() |
13(十三、じゅうさん、とおあまりみつ)は自然数、また整数において、12の次で14の前の数である。英語では thirteen(サーティン、サーティーン)と表記される。西洋を中心に「13 = 忌み数」という認識が強いことから、様々な効果を狙って作品のタイトルなどに使用されることも多い。なお、英語の序数詞では 13th (thirteenth) と表記される。19 (nineteen) まで続く英語の語尾 “-teen”(ティーン)の始まりとなる。ラテン語での表記は tredecim (トレーデキム)。
目次
性質
- 13は6番目の素数である。1つ前は11、次は17。
- ソフィー・ジェルマン素数でも安全素数でもない最小の素数である。
- 最初の完全数番目の素数である。次は107。
- 約数の和は14。
- 11 と 13 は3番目の双子素数である。1つ前は(5, 7)、次は(17, 19)。
- 7 と 13 は2番目のセクシー素数である。1つ前は(5, 11)、次は(11, 17)。
- (5, 7, 11, 13) 、(11, 13, 17, 19) はそれぞれ1番目、2番目の四つ子素数である。次は(101, 103, 107, 109)。
- p = 13 のときの 2p − 1 で表される 213 − 1 = 8191 は5番目のメルセンヌ素数である。1つ前は7、次は17。
- なお、2p − 1 が素数であるためには p もまた素数でなければならない。
- 7番目のフィボナッチ数である。1つ前は8、次は21。
- 6番目のトリボナッチ数である。1つ前は7、次は24。
- 13# + 1 = 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- 113 = 0.076923… (下線部は循環節で長さは6)
- 10進数表記において桁を入れ替えても素数となる最小のエマープである。(13 ←→ 31)次は17。
- 1 と 3 を使った最小の素数である。次は31。ただし単独使用を可とするなら1つ前は11。(オンライン整数列大辞典の数列 A020451)
- 13…3 の形の最小の素数である。次は1333333333333333。(オンライン整数列大辞典の数列 A093671)
- 1…13 の形の最小の素数である。次は113。(オンライン整数列大辞典の数列 A093011)
- 連続奇数を昇順に並べてできる最小の素数である。次は135791113151719。(オンライン整数列大辞典の数列 A048847)
- 三角数を昇順に並べてできる最小の素数である。次は136101521。(オンライン整数列大辞典の数列 A158750)
- 三角数を昇順に並べた数とみたとき1つ前は1、次は136。(オンライン整数列大辞典の数列 A078795)
- 三角数を昇順に並べてできる最小の素数である。次は136101521。(オンライン整数列大辞典の数列 A158750)
- 13 = 23 + 5
- n = 3 のときの 2n + 5 の値とみたとき1つ前は9、次は21。(オンライン整数列大辞典の数列 A168614)
- 2n + 5 の形の2番目の素数である。1つ前は7、次は37。(オンライン整数列大辞典の数列 A057733)
- 13 = 23 + 22 + 1
- n = 2 のときの n3 + n2 + 1 の値とみたとき1つ前は3、次は37。(オンライン整数列大辞典の数列 A098547)
- n = 3 のときの 2n + 5 の値とみたとき1つ前は9、次は21。(オンライン整数列大辞典の数列 A168614)
- 13 = 32 + 4
- n = 2 のときの 3n + 4 の値とみたとき1つ前は7、次は31。(オンライン整数列大辞典の数列 A168609)
- 3n + 4 の形の3番目の素数である。1つ前は7、次は31。(オンライン整数列大辞典の数列 A102903)
- n = 2 のときの 3n + 4 の値とみたとき1つ前は7、次は31。(オンライン整数列大辞典の数列 A168609)
- 13 = 51 + 8
- n = 1 のときの 5n + 8 の値とみたとき1つ前は9、次は33。
- 5n + 8 の形の最小の素数である。次は2524354896707237777317531408904915934954260592348873615264892578133。(オンライン整数列大辞典の数列 A102910)
- n = 1 のときの 5n + 8 の値とみたとき1つ前は9、次は33。
- 132 = 169 → 961 = 312
- いかなるN進法で169とか961を表記しても、169及び961は必ず平方数となる。
- 平方した数を逆順に並び替えた数も平方数となる2番目の数である。1つ前は12、次は21。(オンライン整数列大辞典の数列 A035123)
- このような性質をもつ最小の素数である。次は31。
- 132 = 169、142 = 196
- 連続した整数の平方数の数字が同じ組み合わせになる最小の数である。次は157。(オンライン整数列大辞典の数列 A072841)
- 連続した整数の平方数の数字が同じ組み合わせになる最小の素数である。次は157。(オンライン整数列大辞典の数列 A175519)
- 13! = 6227020800
- 13 = 30 + 31 + 32
- a = 3 のときの a0 + a1 + a2 の値とみたとき1つ前は7、次は21。
- 13 = 33 − 13 − 1 = 43 + 14 + 1
- n = 3 のときの nn − 1n − 1 の値とみたとき1つ前は3、次は85。(オンライン整数列大辞典の数列 A023037)
- 素数 p = 3 のときの pp − 1p − 1 の値とみたとき1つ前は3、次は781。(オンライン整数列大辞典の数列 A001039)
- 3の累乗和とみたとき1つ前は4、次は40。
- 素数 p = 3 のときの p0 + p1 + p2 の値とみたとき1つ前は7、次は31。(オンライン整数列大辞典の数列 A060800)
- 各位の和が13となるハーシャッド数の最小は247、1000までに5個、10000までに36個ある。
- 13, 14, 15 の3連続整数の3辺でできる三角形の面積が整数 (84) となる2番目の組である。1つ前は 3, 4, 5 、次は 51, 52, 53 。
- 2番目の六芒星数である。1つ前は1、次は37。
- 約数の和が13になる数は1個ある。(9) 約数の和1個で表せる7番目の数である。1つ前は8、次は14。
- 各位の和が4になる2番目の数である。1つ前は4、次は22。
- 各位の和が4になる数で素数になる最小の数である。次は31。(オンライン整数列大辞典の数列 A062339)
- 奇数という条件をつけると各位の和が4になる最小の数である。
- 各位の平方和が10になる最小の数である。次は31。(オンライン整数列大辞典の数列 A003132)
- 各位の平方和が n になる最小の数である。1つ前の9は3、次の11は113。(オンライン整数列大辞典の数列 A055016)
- 各位の立方和が28になる最小の数である。次は31。(オンライン整数列大辞典の数列 A055012)
- 各位の立方和が n になる最小の数である。1つ前の27は3、次の29は113。(オンライン整数列大辞典の数列 A165370)
- 各位の積が3になる2番目の数である。1つ前は3、次は31。(オンライン整数列大辞典の数列 A034050)
- 各位の積が3になる数で素数になる2番目の数である。1つ前は3、次は31。(オンライン整数列大辞典の数列 A107689)
- 13番目の三角数は91で2桁の最大数になる。いいかえると自然数を1から13まで加えていくと2桁最大数になる。1つ前は3、次は44。(オンライン整数列大辞典の数列 A095863)
- 13 = 3 × 22 + 1
- 13 = 22 + 32
- 異なる2つの平方数の和で表せる3番目の数である。1つ前は10、次は17。(オンライン整数列大辞典の数列 A004431)
- n = 2 のときの n2 + (n + 1)2 の値とみたとき1つ前は5、次は25。(オンライン整数列大辞典の数列 A001844)
- n2 + (n + 1)2 で表せる2番目の素数である。1つ前は5、次は41。(オンライン整数列大辞典の数列 A027862)
- 3番目の中心つき四角数である。1つ前は5、次は25。
- n から始まる n 連続整数の平方和で表せる数である。1つ前は1、次は50。(オンライン整数列大辞典の数列 A050410)
- 13 = 22 + 9
- n = 2 のときの 2n + 9 の値とみたとき1つ前は11、次は17。(オンライン整数列大辞典の数列 A188165)
- 2n + 9 の形の2番目の素数である。1つ前は11、次は17。(オンライン整数列大辞典の数列 A104070)
- n = 2 のときの 2n + 9 の値とみたとき1つ前は11、次は17。(オンライン整数列大辞典の数列 A188165)
- 13 = 72 − 62 = (7 + 6) × (7 − 6)
- n = 7 のときの (n + 6)(n − 6) の値とみたとき1つ前は0、次は28。(オンライン整数列大辞典の数列 A098847)
- 5番目の幸運数の要素である。1つ前は9、次は15。
- 4番目のマルコフ数である。1つ前は5、次は29。
- 12 + 52 + 132 = 3 × 1 × 5 × 13
- 13 = 24 − 31 = 28 − 35
- a > 1 , b > 1 のとき ax − by = c を成り立たせる自然数 x , y の解を2つもつ7番目の数である。1つ前は10、次は89。(オンライン整数列大辞典の数列 A236211)
- 13 = 24 − 22 + 20
- n = 2 のときの n4 − n2 + 1 の値とみたとき1つ前は1、次は73。(オンライン整数列大辞典の数列 A060886)
その他 13 に関連すること
- 13 の接頭辞:tredec(拉)、triskaideca または triskaideka(希)
- 13倍をトリーデキュプル (tredecuple) という。
- 英語でパン屋の1ダース (Baker's dozen) は、13 を表す表現。
- 英語では 13 から 19 までの数には語尾に“teen”(ティーン)が付く。そのため、10代の若者を「ティーンズ」「ティーンエイジャー」と呼ぶこともある。また、独語も同様に 13 から 19 までの数には語尾に“zehn”(10) が付く。
- UTC+13は、キリバスの一部やサモア、トンガなどで採用されている標準時である。
- 13時は日本における時刻の24時間表記(24時制)で使用され、午後1時を指す。
- カイコガの幼虫の体節数は13である。
- 13は、E24系列の標準数(寸法を選ぶ際の工業規格による基準値)。
- バーコード規格であるEANの国コード13は、アメリカ合衆国、カナダ。
- EAN規格における「標準バーコード」は13桁の数字で構成される。
- JIS X 0401、ISO 3166-2:JPの都道府県コードの 13 は東京都。すなわち都道府県コードの番号順に都道府県を配列したとき、13番目は東京都。
- トランプの各スートは13枚ずつ。また、13のカードはキング (K)。
- 麻雀の手牌の枚数は通常13枚。また、么九牌は13種類。全て集めると十三么九(国士無双)という役になる。手役の合計が13翻以上で数え役満とするルールもある。ほかにもローカル役満役として十三不塔という役がある。
- 囲碁ではしばしば十三路盤が使われる。
- 日本の刑法では、性的同意年齢が13歳とされており、13歳未満の児童への性行為は合意の上でも性犯罪と見なされる。実際には淫行条例により18歳未満の児童への性行為が禁止されている場合が多い。
- 日本のテレビ業界では、13週(=91日≒約3箇月)を1クールと呼ぶ。そのため、ドラマやアニメなどは13話を単位として作られることが多い。
- ボクシングの世界王座連続防衛日本記録は具志堅用高の13度。
- 十三角形
13番目のもの
元素・惑星
歴史上の人物
- 第13代天皇は、成務天皇。
- 第13代内閣総理大臣は、桂太郎。
- 通算して第13代の征夷大将軍は、久明親王(鎌倉幕府第8代将軍)。
- 鎌倉幕府第13代執権は、北条基時。
- 室町幕府第13代将軍は、足利義輝。
- 江戸幕府第13代将軍は、徳川家定。
- 大相撲第13代横綱は、鬼面山谷五郎。
- アメリカ合衆国第13代大統領は、ミラード・フィルモア。
- 殷朝第13代帝は、祖乙。
- 周朝第13代王は、平王。
- ルイ13世は、ブルボン朝第2代フランス国王。
- アルフォンソ13世は、ボルボン朝第二次復古における同朝としては9人目のスペイン国王。
- ダライ・ラマ13世は、第13代のダライ・ラマ。
- 第13代ローマ教皇はエレウテルス(在位:175年 - 189年)である。
- グレゴリウス13世は、第226代ローマ教皇。
- レオ13世は、第256代ローマ教皇。
その他
- 年始から13日目は1月13日。
- イスラム教のクルアーンにおける第13番目のスーラは雷電である。
- タロットの大アルカナで XIII は、死神。
- 易占の六十四卦で第13番目の卦は、天火同人。
- 13th Generation(第13世代)は、アメリカ合衆国において概ねジェネレーションXに該当する。同国の独立前より20年ごとに世代を区切った場合、「13番目の世代」に該当することから。
- 第十三国立銀行は1877年に鴻池家が開業した国立銀行。後に鴻池銀行に転換、さらに他銀行との合併により三和銀行→現・三菱UFJ銀行となっている。
- 音楽
- 憲法、法律の13条
- 鉄道、道路の13号線
- 軍隊関連の第13
宗教・風習・文化
- 忌み数: 西洋では 13 が忌み数とされている(『13 (忌み数) 』を参照)。なお、キリスト教圏でも忌み数としない地域が存在する。
- 上記のことに関連して、日本で使用される駐留軍の車のナンバープレートには、下2桁13の番号は払い出されない(希望番号を除く)。野球のメジャーリーグでは、背番号13はアレックス・ロドリゲスを初めとして中南米出身の選手を中心によく用いられている。
- 作品のタイトルや作中において、不吉さやダークさ、トリッキーさを象徴する数字として使用されることが多い。また、北欧神話やキリスト教の俗説などから「(13人目の)招かれざる客」という意味合いもある。
- 日本における忌み数4と9を足すと13になる。上述した十三塚や十三重塔における「13」という数は死者を象徴しているとする説[1]がある一方、これらの存在を以て吉数とする見方もある。
- 中国の広東語圏では一般的に13は吉数である。これは十三の諧音が「實生」(実るという意)のためである。
- ヨーロッパの国の中でも、イタリアでは13はラッキーナンバーとなっている。
- アメリカ合衆国においても建国時の州数が13(独立十三州)であるため、かつては吉数とされていた。同国では国旗の縞の数の他、1ドル紙幣の裏面や国章にも13の数に因んだものが多く見受けられる。
- ユネスコの世界文化遺産に登録された、レオナルド・ダ・ヴィンチが描いた絵画『最後の晩餐』には13人が描かれている。
- マヤ文明の代表的な長期暦は13バクトゥンを一つのサイクルとしている。また、より小さい暦ではツォルキン暦における係数を13までとするなど、マヤにとって13は特別な数の一つである。
- ユダヤ教において13は聖数とされる。
- 十三仏(十三佛)は、日本で考えられた冥界の審理に関わる13の仏。
- 十三塚は、日本各地にある民間信仰による土木構造物。
- 十三重塔
- 諏訪大社上社の古文献の中で、神社(神名)を十三所にまとめた記述がある。後に中・下の各々十三所が追加され全部で三十九所となるが、本来の最初の十三所を「上の十三所」という。なお、十三は1年の12ヶ月に閏月を足した数とされる[5]。
- 十三箇所巡礼
- 神社の名称
- 中尾山 十三寺(なかおさん じゅうそうじ)は、富山県下新川郡入善町舟見にある高野山真言宗の寺院(北陸三十三ヵ所観音霊場の第三十二番)[11]。
- 十三回忌は、没後、12年目の祥月命日。
- 結婚13周年記念日は、レース婚式。
- 旧暦9月13日の月見を十三夜、この夜の月を豆名月または栗名月という。
- サツマイモの売り言葉として、「栗より美味い十三里」がある。「栗」は九里、「より」が四里にかかっており、足すと十三里になる。由来などの詳細は「サツマイモ#文化」を参照。
- くし屋の名称として東京や京都に「十三や」がある。くしの語呂合わせである数字の九四は「苦死」に通じて縁起がよくないため、足して十三としている[12]。
- 京都周辺など関西を中心とした一部地域では、子供が数え年で13歳になると「十三詣り」という祝い事をする。
- 沖縄県では、子供が数え年で13歳になると家族や周囲が「十三祝い」という祝い事をする。生年祝い(トゥシビー)の一つ。
13 に関する名称
地名
- 十三湖(じゅうさんこ)は、青森県にある湖。
- 十三(じゅうそう)は、大阪市北部の淀川区にある地名。→阪急電鉄十三駅
- 十三日町は、青森県八戸市にある地名。
- 十三塚原は、鹿児島県に広がる台地。
- 十三浜村は、宮城県にかつてあった村(1955年の合併により廃止)、現在の石巻市北上町十三浜。
- 十三峠は、大阪府八尾市と奈良県生駒郡平群町の境にある峠。上述の通り、峠付近に現存する十三塚に由来。
- 十三本木峠は、岩手県二戸郡一戸町南部の峠。
作品
- タイトル
- 『サーティーン あの頃欲しかった愛のこと』は、原題が“Thirteen”のアメリカ映画。
- 『13日の金曜日』は、アメリカのホラー映画。
- 『十三人の刺客』は、1963年と2010年に公開された時代劇日本映画。
- 『レベル・サーティーン』(LEVEL THIRTEEN)は、2006年に公開されたタイのホラー映画。
- 『サーティーン・ボーイ 僕は札束中学生』は、TBS系列で放送されたテレビドラマ。
- 『サーティーン』は、イギリスのロックバンド、ティーンエイジ・ファンクラブの1993年のアルバム。
- 『13』は、イギリスのロックバンド、ブラーの1999年のアルバム。
- 『13』は、アメリカのミュージシャン、ブライアン・セッツァーの2006年のアルバム。
- 『This is Thirteen』は、カナダのヘヴィメタルバンド、アンヴィルの2007年のアルバム。
- 『13 (サーティーン)』は、日本のロックバンド、SADSのアルバム。
- 『サーティーン』は、アメリカのヘヴィメタルバンド、メガデスの2011年のアルバム。
- 『13』は、イングランドのヘヴィメタルバンド、ブラック・サバスの2013年のアルバム。
- 『ゴルゴ13』は、さいとう・たかをの劇画およびその主人公。
- 『XIII サーティーン〜大統領を殺した男〜』は日本のゲームソフト。
- 『十三支演義 〜偃月三国伝〜』は日本のゲームソフト。「三国志」をテーマにした恋愛アドベンチャーゲーム。
- 『13階段』は高野和明の長編ミステリー小説、およびこれを題材にした映画作品。
- 『十三番目のアリス』は伏見つかさ著(イラスト:シコルスキー)のライトノベル作品。
- 『パラドックス13』は東野圭吾のSFサバイバル小説。
- 『十三の呪』は三津田信三のホラー小説。
- 『十三回忌』は小島正樹の推理小説。
- 『13歳のハローワーク』は村上龍の書籍。また、これを題材にしたゲームやドラマ作品がある。
- 作品内に登場
- 「十三妹」は、中国・清代末期に書かれた武侠小説『児女英雄伝』の登場人物、およびこの人物を題材とした作品。
- 「第13独立部隊」は、アニメ『機動戦士ガンダム』に登場する架空の部隊。
- 「13th Racing」は、ゲーム『リッジレーサー』シリーズに登場する架空の車名。
- 十三騎士団
- 「聖槍十三騎士団」はアダルトゲーム『Dies irae -Also sprach Zarathustra-』に登場する架空の敵組織(軍団)。
- 「ローマ正教十三騎士団」は鎌池和馬のライトノベル『とある魔術の禁書目録』及び、これを原作としたアニメ・漫画作品に登場する架空の宗教組織「ローマ正教」内の騎士団。
人名
日本の人名に、十三(「じゅうぞう」など)もしくは一三(「かずみ」「いちぞう」など)がある。
- 伊丹十三(いたみ・じゅうぞう)は『タンポポ』(1985) や『マルサの女』(1987) の映画監督。
- 田中十三(たなか・じゅうぞう)は撮影技師、「日本キネマ撮影所」(双ヶ丘撮影所)を設立した。
- 高橋一三(たかはし・かずみ)は、元プロ野球選手。アニメ『巨人の星』において、主人公星飛雄馬の巨人入団以降におけるピッチングフォームのモデルにもなった。
- 小林一三(こばやし・いちぞう)は阪急電鉄をはじめとする阪急東宝グループ(現・阪急阪神東宝グループ)の創業者として知られる実業家。
- 一三(いちぞう)は日本の俳優・タレント、以前は本名の屋宮一三で活動していた。
- ペンネームとして所十三(ところ・じゅうぞう)、やまさき十三(じゅうぞう、本名に由来)、海野十三(うんの・じゅうざ、または じゅうぞう)などがある。
鉄道関連
その他
- 13トリソミーは、13番染色体における染色体異常の一種。
- 横浜ブルク13は、横浜市中区の桜木町駅近くにあるヒューリックみなとみらいの映画館(ティ・ジョイ運営)。開業時点で13スクリーンを持つ。
- 株式会社十三は損害保険事業、不動産開発・管理事業、カーリース事業を行う会社。1980年、日産火災海上保険の専属代理店として創業。
- 十三の窓があり「十三窓席」と俗称される小堀遠州作の茶室「擁翠亭」が、京都市にある。
- 「Afro13」は、佐々木智広が結成した劇団。
- 明の十三陵は、中国・明代の皇帝、后妃の陵墓群。
- 広東十三行は、中国・清代の広州において外国貿易を独占した商人団。
- 十三勢は、中国武術の一つである太極拳の基本武功。
- 十三年戦争は、1454年からの13年間にプロシア連合とドイツ騎士団国の間で行われた戦争。
- 十三翼の戦いは、モンゴル帝国の祖チンギス・ハーンとジャムカの戦い。
- 13年ゼミは、アメリカ合衆国東部に生息する周期ゼミ。13年周期で発生し4種存在する。
- アポロ13号は月への途上にトラブルを起こしたが、奇跡的に地球に生還した。
- 十三号型巡洋戦艦は、起工前に全隻建造中止となった大日本帝国海軍の巡洋戦艦。
- 伊号第十三潜水艦は、大日本帝国海軍の潜水艦。
- X-13は、アメリカの垂直離着陸 (VTOL) 実験機。
- 各種のC13
十三個一組で数えるもの
- 十三星座:十二星座に蛇使い座を加えた星座。また、占星術において「十三星座占い」が使用されることもある。
- 十三経:易・書・詩・周礼・儀礼・礼記・春秋左氏伝・春秋公羊伝・春秋穀梁伝・論語・孝経・爾雅・孟子
- 日本の自動車十三大メーカー:トヨタ・日産・ホンダ・三菱・マツダ・スバル・スズキ・ダイハツ・光岡・日野・いすゞ・三菱ふそう・UDトラックス
- 行政区画・植民地
- 13植民地→独立十三州:アメリカ合衆国の独立時の州。それに因んで、アメリカ合衆国の国旗の縞は13本となっている。
- 十三道制:李氏朝鮮の地方行政区画。13道による構成はその後の大韓帝国、日本統治時代にも引き継がれた。
- 宗派・教派
- 中国十三宗:中国で栄えた仏教における13宗派の総称。
- 十三宗五十六派:宗教団体法施行(1940年)以前で、日本における仏教の成立に大きく関わる大本の宗派。
- 神道十三派:明治時代から1945年の宗教団体法廃止までにおける日本政府公認の神道教派13派。
- 13人によるもの
- アッシリア十三士:キリスト教信仰強化のため6世紀にメソポタミアからグルジアに派遣された13人の修道士。
- 十三人の合議制:鎌倉時代初期における有力御家人十三人による合議制。
- 吉田13人衆:内閣総理大臣・吉田茂の主力側近グループ13人を指す。
脚注
出典
- ^ 吉野裕子『陰陽五行と日本の歴史』(大和書房)
- ^ 十三仏霊場(鳴門観光興業)
- ^ 十三重塔 Archived 2012年10月31日, at the Wayback Machine.(談山神社公式サイト)
- ^ 十三重塔いろいろ[リンク切れ](徒然なるままに)
- ^ 諏訪大社上社:十三所(上十三所・中十三所・下十三所)(諏訪大社と諏訪神社 from八ヶ岳原人版)
- ^ 信濃國十三社巡り(玄松子の記憶)
- ^ 十三神社(神社ふり〜く)
- ^ 十三神社・神野宮(神奈備)
- ^ 十三社神社(東京都神社庁)
- ^ 十三所社(山梨県神社庁)
- ^ 北陸三十三ヵ所観音霊場巡り:第三十二番 中尾山 十三寺
- ^ 櫛の十三や 東京と京都 どっちが本家?(木のメモ帳:木あそび)
- ^ 十三湊遺跡(五所川原市ホームページ)
符号位置
| 記号 | Unicode | JIS X 0213 | 文字参照 | 名称 |
|---|---|---|---|---|
| ⑬ | U+246C | 1-13-13 | ⑬⑬ | CIRCLED DIGIT THIRTEEN |
| ⒀ | U+2480 | - | ⒀⒀ | PARENTHESIZED DIGIT THIRTEEN |
| ⒔ | U+2494 | - | ⒔⒔ | DIGIT THIRTEEN FULL STOP |
| ⓭ | U+24ED | 1-12-13 | ⓭⓭ | DOUBLE CIRCLED DIGIT THIRTEEN |
関連項目
- 数に関する記事の一覧
- 西暦13年 紀元前13年 1913年 2013年 13世紀 - 平成13年 昭和13年 大正13年 明治13年 - 1月3日
- 13月(13の月の暦、Undecimber)
- 名数一覧
| (0) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |
| 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
| 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
| 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |
| |||||||||
正の数と負の数
(13 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/12/23 09:15 UTC 版)
ナビゲーションに移動 検索に移動この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2019年1月) |
数学における正の数(せいのすう、英: positive number; 正数)は、0より大きい実数を言う。対照的に、負の数(ふのすう、英: negative number)は、0より小さい実数である。(とくに初等数学・算術や初等数論などの)文脈によっては、(暗黙の了解のもと)特に断りなく、より限定的な範囲の正の有理数や正の整数という意味で単に「正の数」と呼んでいる場合がある(負の数も同様)。
目次
定義
数学において負数はマイナス記号を数字の前につけて表されるが、簿記などでは数字を赤くしたり三角形を数字の前に付けることによって表すこともある。
零は増減の無い状態であるため、正でも負でもない。負でない数 (non-negative number) とは零より小さくない、つまり零または正の実数である。正でない数 (non-positive number) とは零より大きくない、つまり零または負の実数である。
- 注意
- 複素数の体系で考えている場合、そのうち実数についてのみ正負を論じ、虚数は正でも負でもないとされる。例えば「正の数」と言えば、それが実数であることを暗黙のうちに含意するが、明確化のために「正の実数」ということもできる。
- 一般に順序体において、零元より大きな元を正の元、零元より小さな元を負の元という(後述)。順序体ではない体、例えば複素数体、有限体、p 進数体においては、四則演算と両立する正負の概念を定義することができない。
負の数
負の整数は、方程式 x − y = z がどんな x と y に対しても、z に関する方程式として意味をもつように自然数の体系を拡張して得られるものだと考えられる。このような負の整数の捉え方と同様にして、負の有理数や負の実数も得られる。
負数は、温度のように目盛り上で零より低くなる値を記述するのに有用である。簿記においても、負債の表現に使用できる。簿記において、負債はしばしば赤い数字(赤字)や三角形を前に付けた数字によって表す。
負でない数
負でない数は非負(ひふ)であるといわれる。ゼロに等しいかそれより大きい(すなわち正であるかゼロである)実数を、非負実数(ひふじっすう)という。非負実数は負でない。実数は、負の実数か、非負実数のいずれかである。非負実数のうち整数となるものを非負整数(ひふせいすう)という。
関数
符号関数
定義域が実数であり、正数に対して1を、負数に対して−1を、ゼロに対して0を返す関数 sgn(x) を定義できる。この関数は符号関数と呼ばれることがある。
- 9 − 5 = 4
- (9歳年下の人物と5歳年下の人物は、4歳離れている。)
- 7 − (−2) = 9
- (7歳年下の人物と2歳年上の人物は、9歳離れている。)
- −4 + 12 = 8
- (4歳年上の人物から12歳年下の人物は、自分の8歳年下である。)
- 5 + (−3) = 5 − 3 = 2
- (¥5を持っていて¥3を借りたら、純資産は¥2である)
- –2 + (−5) = −2 − 5 = −7
減算と負符号の概念の混乱を避けるため、負符号を上付きで書く場合もある(ただし、会計では負符号を△で表現する)。
- −2 + −5 = −2 − 5 = −7
- △2 + △5 = △2 − 5 = △7
正数をより小さな正数から減ずると、結果は負となる。
- 4 − 6 = −2
- (¥4を持っていて¥6を使ったら、負債¥2が残る)
正数を任意の負数から引くと、結果は負となる。
- −3 − 6 = −9
- (負債が¥3あってさらに¥6を使ったら、負債は¥9となる)
負数を減ずることは、対応する正数を加えることと等価である。
- 5 − (−2) = 5 + 2 = 7
- (純資産¥5を持っていて負債を¥2減らしたら、新たな純資産は¥7となる)
別の例
- −8 − (−3) = −5
- (負債が¥8あって負債を¥3減らしたら、まだ¥5の負債が残る)
乗算
負数を掛けることは、正負の方向を逆転させることになる。負数に正数を掛けると、積は負数のままとなる。しかし、負数に負数を掛けると、積は正数となる[1]。
- (−20) × 3 = −60
(負債¥20を3倍にすれば、負債¥60になる。)
- (−40) × (−2) = 80
(後方へ毎時40km進む車は、2時間前には現在地から前方へ80kmの位置にいた。)
これを理解する方法の1つは、正数による乗算を、加算の繰り返しと見なすことである。3 × 2 は各グループが2を含む3つのグループと考える。したがって、3 × 2 = 2 + 2 + 2 = 6 であり、当然 −2 × 3 = (−2) + (−2) + (−2) = −6 である。
負数による乗算も、加算の繰り返しと見なすことができる。例えば、3 × −2は各グループが−2を含む3つのグループと考えられる。
- 3 × −2 = (−2) + (−2) + (−2) = −6
これは乗算の交換法則を満たすことに注意
- 3 × −2 = −2 × 3 = −6
「負数による乗算」と同じ解釈を負数に対しても適用すれば、以下のようになる。
| −4 × −3 | = − (−4) − (−4) − (−4) |
| = 4 + 4 + 4 | |
| = 12 |
しかし形式的な視点からは、2つの負数の乗算は、積の和に対する分配法則によって直接得られる。
| −1 × −1 | = (−1) × (−1) + (−2) + 2 |
| = (−1) × (−1) + (−1) × 2 + 2 | |
| = (−1) × (−1 + 2) + 2 | |
| = (−1) × 1 + 2 | |
| = (−1) + 2 | |
| = 1 |
除算
除算も乗算と同じく、負数で割ることは、正負の方向を逆転させることになる。負数を正数で割ると、商は負数のままとなる。しかし、負数を負数で割ると、商は正数となる。
被除数と除数の符号が異なるなら、商は負数となる。
- (−90) ÷ 3 = −30
(負債¥90を3人で分けると、負債¥30ずつ継承される。)
- 24 ÷ (−4) = −6
(東を正数、西を負数とする場合:4時間後に東へ24km地点に進む車は、1時間前には西へ6kmの位置にいる。)
両方の数が同じ符号を持つなら、商は(両方が負数であっても)正数となる。
- (−12) ÷ (−3) = 4
累乗
累乗は乗算や除算と同じく、指数を正数にすると、「n乗」に倍増される。しかし、指数を負数にすると、「1 / n乗」に分割される。つまり、指数 n を正数にすると「n 回乗算を繰り返す」ことになるが、指数 n を負数にすると「n 回除算を繰り返す」ことになる。
- 33 = 27
(×3 ×3 ×3 = 27)
- 3−3 = 1/27
(÷3 ÷3 ÷3 = 1/27)
- 360 × 23 = 2880
(360 ×2 ×2 ×2 = 2880)
- 36 × 5−1 = 7.2
(36 ÷5 = 7.2)
負の整数と負でない整数の形式的な構成
有理数の場合と同様、整数を自然数の順序対 (a, b) (これは整数 a − b を表していると考えることができる)を下に述べるようにして同一視したものとして定義することによって自然数の集合Nを整数の集合Zに拡張できる。これらの順序対に対する加法と乗法の拡張は以下の規則による。
- (a, b) + (c, d) = (a + c, b + d)
- (a, b) × (c, d) = (a × c + b × d, a × d + b × c)
ここで以下の規則により、これらの順序対に同値関係 ~ を定義する。
- (a, b) ~ (c, d) となるのは a + d = b + c なる場合、およびこの場合に限る
この同値関係は上記の加法と乗法の定義と矛盾せず、ZをN2の ~ による商集合として定義できる。すなわち2つの順序対 (a, b) と (c, d) が上記の意味で同値であるとき同一視する。
さらに以下の通り全順序をZに定義できる。
- (a, b) ≤ (c, d) となるのは a + d ≤ b + c となる場合、およびこの場合に限る
これにより加法の零元が (a, a) の形式で、(a, b) の加法の逆元が (b, a) の形式で、乗法の単位元が (a + 1, a) の形式で導かれ、減法の定義が以下のように導かれる。
- (a, b) − (c, d) = (a + d, b + c).
負の数の起源
長い間、問題に対する負の解は「誤り」であると考えられていた。これは、負数を実世界で見付けることができなかったためである(例えば、負数のリンゴを持つことはできない)。その抽象概念は早ければ紀元前100年 – 紀元前50年には認識されていた。中国の『九章算術』には図の面積を求める方法が含まれている。赤い算木で正の係数を、黒い算木で負の係数を示し、負の数がかかわる連立方程式を解くことができた。紀元後7世紀ごろに書かれた古代インドの『バクシャーリー写本』[2]は"+"を負符号として使い、負の数による計算を行っていた。これらが現在知られている最古の負の数の使用である。
プトレマイオス朝エジプトではディオファントスが3世紀に『算術』で 4x + 20 = 0 (解は負となる)と等価な方程式に言及し、この方程式はばかげていると言っており、古代地中海世界に負数の概念がなかったことを示している。
7世紀の間に、負数はインドで負債を表すために使われていた。インドの数学者ブラーマグプタは『ブラーフマスプタ・シッダーンタ』(628年)において、今日も使われている一般化された形式の解の公式を作るために、負数を使うことについて論じている。彼は二次方程式の負の解を発見し、負数と零が関わる演算に関する規則も与えている。彼は正数を「財産」、零を「0 (cipher)」、負の数を「借金」と呼んだ[3][4]。12世紀のインドで、バースカラ2世も二次方程式に負の根を与えていたが、問題の文脈では不適切なものとして負の根を拒絶している。
8世紀以降、イスラム世界はブラーマグプタの著書のアラビア語訳から負の数を学び、紀元1000年頃までには、アラブの数学者は負債に負の数を使うことを理解していた。
負の数の知識は、最終的にアラビア語とインド語の著書のラテン語訳を通してヨーロッパに到達した。
しかし、ヨーロッパの数学者はそのほとんどが、17世紀まで負数の概念に抵抗を見せた。ただしフィボナッチは、『算盤の書』(1202年)の第13章で負数を負債と解釈し、後には『精華』で損失と解釈して金融問題に負の解を認めた。同時に、中国人は右端のゼロでない桁に斜線を引くことによって負数を表した。ヨーロッパ人の著書で負数が使われたのは、15世紀中のシュケによるものが最初であった。彼は負数を指数として使ったが、「馬鹿げた数」であると呼んだ。
イギリスの数学者フランシス・マセレス[2]は1759年、負数は存在しないという結論に達した[5]。
負数は現代まで十分に理解されていなかった。つい18世紀まで、スイスの数学者レオンハルト・オイラーは負数が無限大より大きいと信じており(この見解はジョン・ウォリスと共通である)、方程式が返すあらゆる負の解を意味がないものとして無視することが普通だった[6]。負数が無限大より大きいという論拠は、 の商と、x が正の側から x = 0 の点に近づき、交差した時何が起きるかの考察によって生じている。
一般化
正の行列
- 正行列
- 実行列Aについて、Aが負でないということを、Aのすべての成分が負でない、というふうに定めることができる。このとき、実行列のうちには正とも負とも言えないものもあることになる。また、実行列Aについて、Aの全ての正方部分行列の行列式が負でないとき、Aのことを完全に非負(行列理論)あるいは、完全に正(コンピュータ科学者)と呼ぶことがある。
- 正定値行列
- 一方で、線形代数学的な観点から、実対称行列やより一般に複素エルミート行列について、上とは異なった正負の概念がしばしば用いられる。エルミート行列Aは、その固有値の全てが負でないときに、負でない(あるいは単に、正である)とよばれる。Aが負でないということはある行列BについてAが B*.Bと書けることと同値になる(行列の定値性も参照)。無限次元の場合として、函数解析学における正作用素の概念が対応する。
正錐
抽象代数学の言葉では、正の数の全体 P は実数全体 ℝ の正錐と呼ばれる対象を成す。これにより ℝ は加法に関して順序群、加法と乗法に関して順序体と呼ばれる構造を持ち、また逆に、順序群や順序体としての ℝ の正錐 P が与えられれば「正の数とは P の任意の元のことである」と述べることができる。
xy-平面 ℝ2 の第一象限や xyz-空間 ℝ2 の x > 0, y > 0, z > 0 なる八分象限 などが順序線型空間としての正錐の例であり、この構造に「錐」の名称がつけられている理由をみることができる。
これらのような順序構造において、正錐はそれぞれの付加構造によって記述できる良い性質を様々に持つ。
函数解析学における正作用素全体の成す凸錐もまたそのような例であり、より抽象的にバナッハ環、C*-環における正の元などが考察の対象となる。
関連項目
- 符号 (数学)
- プラス記号とマイナス記号
- 符号付数値表現:負の二進数と負でない二進数
- ゼロの発見
- −0
脚注
- ^ 『相対論の式を導いてみよう、そして、人に話そう』(小笠英志、ベレ出版、ISBN 978-4860642679)の PP.121-127にマイナス×マイナスがプラスになることの小学生も納得できる説明が書いてある。
- ^ Hayashi, Takao (2005), "Indian Mathematics", in Flood, Gavin, The Blackwell Companion to Hinduism, Oxford: Basil Blackwell, 616 pages, pp. 360-375, ISBN 978-1-4051-3251-0.
- ^ Colva Roney-Dougal, Lecturer in Pure Mathematics at the University of St Andrews, stated this on the BBC Radio 4 "In Our Time", on Negative Numbers, 9 March 2006.
- ^ Knowledge Transfer and Perceptions of the Passage of Time, ICEE-2002 Keynote Address by Colin Adamson-Macedo. [1]
- ^ Maseres, Francis, 1731–1824. A dissertation on the use of the negative sign in algebra, 1758.
- ^ Alberto A. Martinez, Negative Math: How Mathematical Rules Can Be Positively Bent, Princeton University Press, 2006; おもに1600年代から1900年代前半にかけての、負数に関する論争の歴史。
外部リンク
- Weisstein, Eric W. "Positive Number". MathWorld(英語). / Weisstein, Eric W. "Negative Number". MathWorld(英語).
- positive - PlanetMath.(英語) / negative number - PlanetMath.(英語)
- positive number in nLab
- Definition:Positive Number at ProofWiki / Definition:Negative Number at ProofWiki
- BBC Radio 4 series "In Our Time", on Negative Numbers, March 9, 2006(英語)
- Endless Examples & Exercises: Operations With Signed Integers(英語)
- Math Forum: Ask Dr. Math FAQ: Negative Times a Negative(英語)
1/3
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/09/29 16:41 UTC 版)
ナビゲーションに移動 検索に移動13(3分の1、さんぶんのいち)は、0 と 1 の間にある有理数の一つで、3 の逆数である。
数学的性質
- 1 ÷ 3 に等しい。
- 因数に3が含まれている六進法・九進法・十二進法・十五進法・十八進法では、13 は有限小数になる。逆に、十進法など因数に3が含まれていないN進法では、割り切れない小数になる。
- 13 = 0.0101…(2) = 0.1(3) = 0.2(6) = 0.2525…(8) = 0.3(9) = 0.3333…(10) = 0.4(12) = 0.5(15) = 0.5555…(16) = 0.6(18) = 0.6D6D…(20) になる。(下線部は循環節)
- は のことである。
- 底面積 S、高さ h の角錐や円錐の体積 V は、V = 13Sh で求められる。
- 級数 1 − 2 + 4 − 8 + …, 12 − 14 + 18 − 116 + ⋯, 14 + 116 + 164 + 1256 + ⋯ はそれぞれ、13 に収束するとも考えられている。
その他 13 に関すること
- 十進法や十六進法では、一つの数字が無限に続く循環小数になる「自然数の逆数」としては最大となるため、1/3は「割り切れない数」の例としてよく用いられる。
- 中国数学および和算では、小半または少半と呼ぶ。
- 野球で投球回 13 とは、「1アウトを取った」という意味である。
- 日本国憲法第56条第1項では「両議院は、各々その総議員の三分の一以上の出席がなければ、議事を開き議決することができない。」と規定している。
- アスパルテームの商品「パルスイート」は使用量が13で砂糖と同程度の甘さになる[1]。
- 柔軟剤の商品名に「ソフラン1/3」(1987年にライオンが発売。現・ふんわりソフラン)、ハミング1/3(花王が発売。現・ハミング。ソフラン1/3に対抗するために発売された。)があった。いずれも従来の柔軟剤を3倍に濃縮した物で、容器のスペースを取らないため人気商品となった。
- 固定資産税では、住宅用地の課税標準において、住宅の敷地で住宅1戸につき200平方メートルを超え、住宅の床面積の10倍までの部分(一般住宅用地)については、課税標準を登録価格の 13 とする特例が設けられている。
- 黙示録のラッパ吹きは、第一から第六が世界の13を滅ぼしていく。
- 『13の純情な感情』は、SIAM SHADEの1997年のシングル。
- 『サンブンノイチ』は、木下半太による小説。及び小説を基に品川ヒロシによって映画化された作品。
- 新約聖書のヨハネの黙示録には15ヶ所に「三分の一」という表現がある。
- 第一の天使がラッパを吹いた。すると、血の混じった雹と火とが生じ、地上に投げ入れられた。地上の三分の一が焼け、木々の三分の一が焼け、すべての青草も焼けてしまった。第二の天使がラッパを吹いた。すると、火で燃えている大きな山のようなものが、海に投げ入れられた。海の三分の一が血に変わり、また、被造物で海に住む生き物の三分の一は死に、船という船の三分の一が壊された。第三の天使がラッパを吹いた。すると、松明のように燃えている大きな星が、天から落ちて来て、川という川の三分の一と、その水源の上に落ちた。この星の名は「苦よもぎ」といい、水の三分の一が苦よもぎのように苦くなって、そのために多くの人が死んだ。第四の天使がラッパを吹いた。すると、太陽の三分の一、月の三分の一、星という星の三分の一が損なわれたので、それぞれ三分の一が暗くなって、昼はその光の三分の一を失い、夜も同じようになった。(ヨハネの黙示録 8章 7節~12節)
- 四人の天使は、人間の三分の一を殺すために解き放された。この天使たちは、その年、その月、その日、その時間のために用意されていたのである。(ヨハネの黙示録 9章 15節)
- その口から吐く火と煙と硫黄、この三つの災いで人間の三分の一が殺された。(ヨハネの黙示録 9章 18節)
- 竜の尾は、天の星の三分の一を掃き寄せて、地上に投げつけた。そして、竜は子を産もうとしている女の前に立ちはだかり、産んだら、その子を食べてしまおうとしていた。(ヨハネの黙示録 12章 4節)
脚注
符号位置
| 記号 | Unicode | JIS X 0213 | 文字参照 | 名称 |
|---|---|---|---|---|
| ⅓ | U+2153 | 1-7-88 | ⅓⅓ | 3分の1 |
関連項目
| ||||
| ||||


