ハーシャッド数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/22 09:37 UTC 版)
ハーシャッド数(ハーシャッドすう、英: harshad number)とは、自然数の各位の数字和が元の数の約数に含まれている自然数である。
例えば、315の約数は (1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315) であって、各位の和は 3 + 1 + 5 = 9 である。9は315の約数なので、315はハーシャッド数である。
ハーシャッド数はインドの数学者 D. R. カプレカル(英語表記: D. R. Kaprekar、カプレカー数の考案者でもある)によって定義され、サンスクリット語の harṣa (喜び)と da (与える)が語源である。イヴァン・ニーベンの名を冠し、ニーベン数(Niven number)とも呼ばれる。
ハーシャッド数は無数に存在し、そのうち最小の数は1である。十進法でのハーシャッド数を1から小さい順に列記すると
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, …(オンライン整数列大辞典の数列 A005349)
定義
自然数 X を n 進法で m 桁の数とする。右端から k 桁目の数字を ak (k = 1, 2, 3, …, m) とすると、
- ハーシャッド数のページへのリンク