ピアポント素数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ピアポント素数の意味・解説 

ピアポント素数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/01 23:13 UTC 版)

ピアポント素数(ピアポントそすう)またはピアポン素数[1](ピアポンそすう、: Pierpont prime)は次のような形で表される素数のことである:

2u 3v + 1, ただし uv非負整数

つまり p − 1 が 3-smooth英語版[注釈 1] であるような素数 p である。

概要

数学者のジェームズ・ピアポント英語版にちなんで名付けられた。彼はこれを円錐曲線を用いて作図できる正多角形の研究に導入した。

v = 0 のときのピアポント素数は 2u + 1 の形であり、これはフェルマー素数となる(u = 0 のときの値 2 を除く)。v がならば u も正でなくてはならない(3v + 1v > 0 のときは 2 以外の偶数であり素数ではないから)。したがって、2 でもフェルマー素数でもない全てのピアポント素数は、k を正の整数として 6k + 1 の形をとる。

ピアポント素数の最初の数項は

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, ... (オンライン整数列大辞典の数列 A005109

となる。

2024年現在知られている最も大きいピアポント素数は 220498148 × 34 + 1 (6,170,560 桁)であり、これが素数であることは2023年6月に発見された[2]

分布

数学の未解決問題
ピアポント素数は無限に存在するか?
小さなピアポント素数の分布。軸は2の指数と3の指数。

経験的には、ピアポント素数は特に珍しかったりまばらに分布しているわけではないようである。106 未満には42個あり、109 までに65個、1020 までに157個、10100 までに795個存在する。

ピアポント素数において代数的な因数分解からの制限はほとんどないため、指数が素数でなくてはならないというメルセンヌ素数の条件のような要求はない。したがって、

この節は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。このテンプレートの使い方
出典検索?"ピアポント素数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
(2019年7月)

第2種ピアポント素数: Pierpont prime of the second kind)は 2u3v − 1 という形の素数である。これらは以下の値である。

2, 3, 5, 7, 11, 17, 23, 31, 47, 53, 71, 107, 127, 191, 383, 431, 647, 863, 971, 1151, 2591, 4373, 6143, 6911, 8191, 8747, 13121, 15551, 23327, 27647, 62207, 73727, 131071, 139967, 165887, 294911, 314927, 442367, 472391, 497663, 524287, 786431, 995327, ... (オンライン整数列大辞典の数列 A005105

k 個の固定された素数 {p1, p2, p3, ..., pk}, pi < pj for i < j に対して、一般化ピアポント素数: generalized Pierpont prime)とは




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ピアポント素数」の関連用語

ピアポント素数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ピアポント素数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのピアポント素数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS