ボーアの原子模型
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/07 06:04 UTC 版)
ボーアの原子模型(ボーアのげんしもけい、英: Bohr's model)とは、ラザフォードの原子模型[注 1]における矛盾を解消するために考案された原子模型である。この模型は、水素原子に関する実験結果を見事に説明し、量子力学の先駆け(前期量子論)となった。
その後のシュレーディンガーによる波動関数の導入とボルンによる確率解釈によって、この模型の「電子が軌道運動をする」という解釈は誤りであることがわかった。
概要
電磁気学によると、電荷を帯びた粒子が円運動をしたとき、円運動の周期の逆数に等しい振動数の電磁波を放出してエネルギーを失ってしまう。そのため、正の電荷を帯びた原子核の周りを負の電荷を持った電子が同心円状の軌道を周回しているという太陽系型原子模型や土星型原子模型では、電子はエネルギーを失って原子核に引き寄せられてしまい、現実に原子が安定的に存在することと矛盾する。一方で、分光学における原子の発光スペクトルの研究により、原子の発する光は特定の複数の振動数のみに限られ、各振動数の間には一定の法則(リッツの結合法則)が成り立つことが知られていた。
それらの疑問点を説明するため、1913年にコペンハーゲン大学のニールス・ボーアは「原子および分子の構成について」という3部作の論文の第1論文[1]の中で、次のような仮説に基づく、新たな原子模型を提示した。
- 電子は特定の離散的なエネルギー状態(エネルギー準位)に属し、対応する軌道を運動する。この状態を定常状態という。定常状態では、電子は電磁波を放出することなく、古典力学にしたがって運動することができる。
- エネルギー準位と対応する軌道は、量子条件が満たされるもののみが選択される。
- 電子はある定常状態から別の定常状態へ、瞬間的に移行することがある。これを状態の遷移という。そのときに放射(吸収)される光の振動数は振動数条件を満たす。
ボーアの示した模型は、なぜ円運動する電子がエネルギーを失わないか、という点を説明するものではないが、ボーアの量子条件という大胆な仮説によりそれを一旦棚上げして、スペクトルの法則性に合致した説明を与えるものであった。
量子条件と振動数条件
量子条件

原子内の電子は、原子核との間にはたらくクーロン力を向心力とする等速円運動を行うが、電子は次の条件を満たす円軌道のみをとることができ、この条件を満たす円軌道上では電子は電磁波を放出せず、円運動を行うことができると仮定する。
既に見たようにボーアの原子模型において、量子数 n に対応して電子のエネルギーが離散化される。量子数 n = 1 に対応する定常状態が最もエネルギーが低く安定した状態であり、この状態を基底状態と呼ぶ。基底状態よりエネルギーの高い量子数 n ≥ 2 に対応する定常状態を励起状態と呼ぶ。基底状態から励起状態へ移ることを励起という。
また、量子数 n に対応する電子の軌道半径は