ボーア=ゾンマーフェルトの量子化条件とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ボーア=ゾンマーフェルトの量子化条件の意味・解説 

ボーア=ゾンマーフェルトの量子化条件

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/25 04:51 UTC 版)

ボーア=ゾンマーフェルトの量子化条件によって定まる水素原子の電子軌道ボーアの原子模型では、1s、2p、3d、4f、5g等の円軌道しか記述できないが、ボーア=ゾンマーフェルトの理論では、例えば、5gとエネルギーの等しい楕円軌道として、5s、5p、5d、5fが現れる。

ボーア=ゾンマーフェルトの量子化条件(ボーア=ゾンマーフェルトのりょうしかじょうけん、: Bohr–Sommerfeld quantum condition)とは、物理学、特に量子力学において多自由度の周期運動に対する量子条件である[1][2]前期量子論において、1913年にデンマークの物理学者ニールス・ボーアが提唱したボーアの量子条件[3]の一般化となっている。ボーアの量子条件は1自由度の周期運動である円軌道の場合に限られていたが、ドイツの物理学者アーノルド・ゾンマーフェルトが1916年に正準形式の解析力学に基づく形で、多自由度の周期運動にまで拡張した[4]。米国のW. ウィルソン英語版や日本の石原純も同様な結果を得ており[5][6]ゾンマーフェルト=ウィルソンの量子化条件とも呼ばれる。ボーア=ゾンマーフェルトの理論は、ボーアの原子模型では円軌道に限られていた水素原子の電子軌道として、楕円軌道が存在することを示すともに、正常ゼーマン効果シュタルク効果微細構造に対する一定の説明を与えることを可能にした[7][8]

概要

一般化座標一般化運動量の組 (qk, pk) (k = 1, 2,...,N) で記述される系において、古典系での運動が変数分離が可能な多重周期運動であり、位相空間での軌道が閉軌道をなすとする。このとき、対応する量子系がとりうる状態を定める次の条件を、ボーア=ゾンマーフェルトの量子化条件と呼ぶ[1][2]

カテゴリ:原子
  • ポータル



  • 英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「ボーア=ゾンマーフェルトの量子化条件」の関連用語








    8
    52% |||||



    ボーア=ゾンマーフェルトの量子化条件のお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    ボーア=ゾンマーフェルトの量子化条件のページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアのボーア=ゾンマーフェルトの量子化条件 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

    ©2025 GRAS Group, Inc.RSS