動物 現生の動物の系統

動物

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/15 12:56 UTC 版)

現生の動物の系統

下位分類

カイメン[種名 1]
(海綿動物門)
クシクラゲ[種名 3]
(有櫛動物門)
クラゲ[種名 4]
(刺胞動物門)
サンゴ[種名 5]
(刺胞動物門)
無腸類[種名 7]
(珍無腸動物門)
チンウズムシ[種名 8]
(珍無腸動物門)
ヒトデ[種名 9]
(棘皮動物門)
ナマコ[種名 10]
(棘皮動物門)
ウニ[種名 11]
(棘皮動物門)
ギボシムシ[種名 12]
(半索動物門)
ナメクジウオ[種名 13]
(頭索動物門)
ホヤ[種名 14]
(尾索動物門)
哺乳類[種名 15]
(脊椎動物門)
ヤムシ[種名 16]
(毛顎動物門)
トゲカワ[種名 17]
(動吻動物門)
エラヒキムシ[種名 18]
(鰓曳動物門)
コウラムシ[種名 19]
(胴甲動物門)
回虫[種名 20]
(線形動物門)
ハリガネムシ[種名 21]
(類線形動物門)
クマムシ[種名 22]
(緩歩動物門)
カギムシ[種名 23]
(有爪動物門)
昆虫類[種名 24]
(節足動物門)
甲殻類[種名 25]
(節足動物門)
ニハイチュウ[種名 27]
(二胚動物門)
パンドラムシ[種名 28]
(有輪動物門)
グナトストムラ[注釈 13][種名 29]
(顎口動物門)
ワムシ[種名 31]
(輪形動物門)
イタチムシ[種名 32]
(腹毛動物門)
プラナリア[種名 33]
(扁形動物門)
条虫[種名 34]
(扁形動物門)
二枚貝[種名 35]
(軟体動物門)
頭足類[種名 36]
(軟体動物門)
ミミズ[種名 37]
(環形動物門)
ゴカイ[種名 38]
(環形動物門)
ユムシ[種名 39]
(環形動物門)
ホシムシ[種名 40]
(環形動物門)
ヒモムシ[種名 41]
(紐形動物門)
ホウキムシ[種名 43]
(箒虫動物門)
コケムシ[種名 44]
(苔虫動物門)
スズコケムシ[種名 45]
(内肛動物門)
各動物門に含まれる代表的な動物の例(和名は総称、詳細は「種名」を参照)

以下に『動物学の百科事典』(2018)で認められている分類体系における動物の門を示す。著者名巌佐ほか (2013)による。各動物門どうしの系統関係などの詳細については異説もあるため、ここでは省略し、次節以降を参照。研究の進展により廃止された門については#かつて存在した動物門を参照。また、門の詳細に関しては各項を参照。

  1. 海綿動物門 Porifera Grant1836
  2. 有櫛動物門 Ctenophora Eschscholtz1829[注釈 14]
  3. 刺胞動物門 Cnidaria Verrill1865[注釈 14]
  4. 平板動物門 Placozoa K.G. Grell, 1971(板形動物)
  5. 珍無腸動物門 Xenacoelomorpha Philippe et al.2011[注釈 15]
  6. 棘皮動物門 Echinodermata Leuckart1854
  7. 半索動物門 Hemichordata Bateson1885
  8. 頭索動物門 Cephalochordata Lankester, 1877[注釈 16]
  9. 尾索動物門 Urochordata Lankester, 1877[注釈 16]
  10. 脊椎動物門 Vertebrata J-B. Lamarck1801有頭動物 Craniata Lankester, 1877[注釈 16]
  11. 毛顎動物門 Chaetognatha Leuckart1854
  12. 胴甲動物門 Loricifera Kristensen1983
  13. 動吻動物門 Kinorhyncha Reinhard, 1887
  14. 鰓曳動物門 Priapulida Théel, 1906
  15. 線形動物門 Nematoda Diesing1861Nemata Cobb, 1919
  16. 類線形動物門 Nematomorpha Vejedovsky, 1886Gordiacea von Siebold, 1843
  17. 緩歩動物門 Tardigrada Spallanzani1777
  18. 節足動物門 Arthropoda Siebold & Stannius, 1845
  19. 有爪動物門 Onychophora Grube, 1853
  20. 直泳動物門 Orthonectida Giard1877[注釈 17]
  21. 二胚動物門 Dicyemida van Beneden1876(菱形動物[148] Rhombozoa van Beneden1882[注釈 17]
  22. 有輪動物門 Cycliophora Funch & Kristensen, 1995
  23. 顎口動物門 Gnathostomulida Ax, 1956
  24. 微顎動物門 Micrognathozoa Kristensen & Funch, 2000
  25. 輪形動物門 Rotifera Cuvier1798[注釈 18]
  26. 腹毛動物門 Gastrotricha Metschnikoff1864
  27. 扁形動物門 Platyhelminthes Hyman, 1951Plathelminthes Schneider1873
  28. 苔虫動物門 Bryozoa (外肛動物 Ectoprocta Nitche, 1870
  29. 内肛動物門 Entoprocta Nitche, 1869(曲形動物 Kamptozoa Cori, 1921
  30. 箒虫動物門 Phoronida Hatschek, 1888
  31. 腕足動物門 Brachiopoda A.M.C. Duméril1806
  32. 紐形動物門 Nemertea Quatrefages1846Rhynchocoela Schultze, 1851
  33. 軟体動物門 Mollusca Cuvier1797
  34. 環形動物門 Annelida J-B. Lamarck1809[注釈 19]

系統樹

1990年代以前は左右相称動物は原腸が口になるか否かで前口動物、後口動物に分類され、さらに体腔が無体腔、偽体腔、真体腔のいずれであるかにより分類されていた。しかし1990年代の18S rRNA遺伝子の解析により、体腔の違いは進化とは関係ない事が判明し、上述の意味での後口動物は単系統でない事が示されたので、いくつかの動物門を新口動物から外し(後述)、前口動物に移した[153]。このような変更を施した後の前口動物が単系統であることが支持されている[144][154][155]

下記は主に ギリベ (2016)の系統仮説に基づく系統樹に、ラーマーら (2019)による分子系統解析の結果を加えて、動物界の系統樹を門レベルまで描いたものである[10][156][157][注釈 20]。ただし、2018年現在、分子系統解析が進展中ということもあり、完全に合意がなされたものではない。本項はこの系統樹に基づき以下の小節にて解説を行う。


後生動物

海綿動物Porifera

有櫛動物Ctenophora

刺胞動物Cnidaria

平板動物Placozoa

左右相称動物

珍無腸動物Xenacoelomorpha[注釈 21]

有腎動物
後口動物
水腔動物

棘皮動物Echinodermata

半索動物Hemichordata

Coelomopora
脊索動物

頭索動物Cephalochordata

尾索動物Urochordata

脊椎動物Vertebrata

Chordata
Deuterostomia
前口動物

毛顎動物Chaetognatha[注釈 22]

脱皮動物

動吻動物Kinorhyncha

? 有棘動物 Scalidophora

鰓曳動物Priapulida

胴甲動物Loricifera

糸形動物

線形動物Nematoda

類線形動物Nematomorpha

Nematoida
汎節足動物

緩歩動物Tardigrada

有爪動物Onychophora

節足動物Arthropoda

Panarthropoda
Ecdysozoa

直泳動物Orthonectida[注釈 23]

二胚動物Dicyemida[注釈 24]

螺旋動物[注釈 25]
担顎動物

顎口動物Gnathostomulida

微顎動物Micrognathozoa

輪形動物Rotifera

Gnathifera
吸啜動物

腹毛動物Gastrotricha

扁形動物Platyhelminthes

Rouphozoa
冠輪動物[注釈 25]

軟体動物Mollusca

環形動物Annelida

紐形動物Nemertea

内肛動物Entoprocta

有輪動物Cycliophora

触手冠動物

腕足動物Brachiopoda

箒虫動物Phoronida

苔虫動物Bryozoa

Lophophorata
Lophotrochozoa
Spiralia
Protostomia
Nephrozoa
Bilateria
ParaHoxozoa
Metazoa

前左右相称動物

動物界

海綿動物

有櫛動物

刺胞動物

平板動物

左右相称動物

海綿動物を最も基部とする分子系統樹の例[157]
動物界

有櫛動物

海綿動物

平板動物

刺胞動物

左右相称動物

有櫛動物を最も基部とする分子系統樹の例[157]

海綿動物門、平板動物門、刺胞動物門、有櫛動物門の4つは左右相称動物に含まれない動物門で、体の左右相称性がなく、これらをまとめて便宜的に「前左右相称動物」と呼ぶこともある[160]。分子系統解析から、このうち海綿動物有櫛動物の何れかが後生動物で最も系統の基部に位置すると考えられている[10][157]。しかし、海綿動物が系統の最も基部に位置するか[157][161][162][163][164]、有櫛動物が系統の最も基部に位置するか[165][166][167][168] は分子系統解析においてもデータが分かれている。

現在の多様性は単純なものから複雑なものに進化してきたとする考え方のもと、かつては最も単純な平板動物から、細胞の種類がより多い海綿動物、そして神経を持つ刺胞動物、最後に神経系に加え筋系ももつ有櫛動物が進化してきたと考えられた[10][156]。ただし、襟鞭毛虫との類似から海綿動物のほうがより原始的な姿に近いとする考えもあった[156]。この進化的な仮説は形態に基づく分岐学的解析においても一時は支持された[156]。しかし、分子系統学が導入された初期にはもう平板動物は二次的に退化したより派生的なグループであることが明らかになり、有櫛動物は刺胞動物より系統の基部に位置することが明らかになった[156][169]。それだけでなく、有櫛動物はほかのすべての後生動物よりも基部に分岐したとする結果が得られた[165][166]。海綿動物は相称性や胚葉がなく体制が単純であるため[160]、最も初期に分岐した後生動物として直感的に受け入れられやすいのに対し、有櫛動物は放射相称、神経系と筋系をもつため、有櫛動物より後に海綿動物が分岐したと考えると筋系や神経系が有櫛動物と Parahoxozoa(有櫛動物と海綿動物以外の後生動物)で2回独立に獲得したと考えるか、海綿動物でどちらも1回完全に喪失したと考えなければならないため、大いに議論を呼んだ[10]。系統誤差の影響を軽減することで、再び海綿動物が最も初期に分岐したと考えられる結果が得られている[157][164]

海綿動物 Poriferaは相称性がなく胚葉がないなど最も単純なボディプランを持つ[160]。海綿動物の細胞は分化するものの、組織を形成することはなく[170]、複雑な器官をもたない[171]。そういったことから海綿動物は側生動物 Parazoa Sollas1884と呼ばれることもある[8][36]

刺胞動物有櫛動物の体は放射相称性を持ち、唯一の腔所である胃腔の開口は口と肛門を兼ねる[172]。これらの動物門の細胞は組織に分化しているものの、器官を形成していない[173]。中胚葉が形成されない二胚葉性の動物であるとされるが、細胞性である間充織を中胚葉とみなし、ヒドロ虫綱以外の刺胞動物と全ての有櫛動物を三胚葉性とみなす事も多い[174][175]

刺胞動物は触手に物理的または化学的刺激により毒を含む刺糸を発射する刺胞と呼ばれる細胞器官を持つ[172]。漂泳性(クラゲ型)と付着性(ポリプ型)という生活様式の異なる2つの型を持ち雌雄異体である[172]。かつては単細胞生物とも考えられていた寄生性のミクソゾアは分子系統解析により刺胞動物に内包されている[175]

それに対し有櫛動物は1個の細胞が変形してできた膠胞を持ち、中胚葉性の真の筋肉細胞を持つほか、全てクラゲ型であり、二放射相称で雌雄同体である[176][177]

平板動物は神経細胞も筋肉細胞も持たず、体細胞は6種類しかなく器官や前後左右軸をもたない、自由生活を行う動物として最も単純な体制を持つ[175]。しかし2008年にセンモウヒラムシ Trichoplax adherens のゲノム解読がなされ、シグナル伝達系、神経シナプス細胞結合などに関する多くの遺伝子の存在が報告された[175]

左右相称動物

4つの門を除いた全ての動物門が左右相称動物である。左右相称動物は完全な三胚葉性で[178]、体が左右相称である[178]。外見上は左右対称であるが、内部の臓器は限られた空間の中に各臓器を互いの連結を保ちながら機能的に配置するために、位置や形が左右非対称となっている[29]

左右相称動物は肛門、およびこれらをつなぐ消化管をもち、体内に体腔ないし偽体腔(線形動物、輪形動物など)を持つ。左右相称動物のボディプランは、前方(運動のとき体の進む方向)と後方の区別、腹側と背側の区別がある傾向があり、したがって左側と右側の区別も可能である[179][180]。運動のとき体の前方へと進むので、進行方向にあるものを識別する感覚器や餌を食べる口が前方に集まる傾向にある(頭化という)。多くの左右相称動物は環状筋縦走筋のペアを持つので[180]、ミミズのような体が柔らかい動物では水力学的骨格 Hydrostatic skeleton蠕動により動く事ができる[181]。また多くの左右相称動物には繊毛で泳ぐことができる幼生の時期がある。

以上の特徴は例外も多い。例えば棘皮動物の成体は(幼生とは違い)放射相称であるし、寄生虫の中には極端に単純化された体の構造をもつものも多い[179][180]

珍無腸動物

珍無腸動物門(珍無腸形動物門) Xenacoelomorpha珍渦虫無腸動物からなる左右相称動物であり、その単系統性は分子系統解析から強く支持されている[10][143]。その系統的位置に関しては、左右相称動物の最も初期に分岐したとする説[144][145] と後口動物の一員であるとする説[146][147][156] がある。前者の考えを支持する場合、珍無腸動物以外の全ての門を含む左右相称動物は有腎動物 Nephrozoaと呼ばれる[10][144][166]

珍渦虫 Xenoturbella1878年に発見され、1949年に報告されたが、その分類は長らく謎で、渦虫の珍しい仲間だと思われていた[182]。しかし2006年以降、分子系統解析により、後口動物に入ることが示唆され、独立した珍渦虫動物Xenoturbellida が設立された[183][184]

無腸動物 Acoelomorphaは無腸類と皮中神経類からなり、それぞれ扁形動物門の無腸目および皮中神経類に分類されていたが、1999年の分子系統解析によって初期に分岐した左右相称動物であることが示唆された[143]。Jaume Baguñà と Marta Riutort によって左右相称動物の新しい門として分離された[185]

2011年、Philippe や中野裕昭らは分子系統解析により珍渦虫動物と無腸動物をともに珍無腸動物門という動物門を構成することを提唱した[146]。そして、チンウズムシの自然産卵による卵と胚の観察結果を報告し、摂食性の幼生期を経ない直接発生型であるなどの共通点を指摘した[186]。珍無腸動物門は設立当初新口動物に分類されたが[143][147][187]、その後の研究により当時知られていた左右相称動物のサブクレード、後口動物・脱皮動物・冠輪動物(螺旋動物)のいずれにも属さず、これら3つ(有腎動物)の姉妹群となる最も初期に分岐した左右相称動物とされた[144][145]。しかし2019年に再び長枝誘因などの系統誤差の影響を軽減することで、珍無腸動物は後口動物の水腔動物との姉妹群であることが支持された[147][188]

毛顎動物

毛顎動物ヤムシと総称される動物で、かつては成体の口が原口に由来しないという発生様式から後口動物とされてきた[189][190]。しかし、主な中枢神経が腹側にあることや顎毛(餌の捕獲器官)にキチン質をもつことなど、前口動物の特徴も持つことは古くから知られてきた[190]。分子系統学による解析が始まってから、後口動物ではないことが明らかになった(この頃の解析では後口動物・前口動物のさらに基部の系統に位置した)[191][192]

18S rRNA、ミトコンドリアDNAHox遺伝子群およびESTデータを用いた近年の分子系統解析では、前口動物であることが明らかになっている[190]。例えば、Laumer et al. (2019)では、前口動物の螺旋動物のうち担顎動物に近縁であるとされる[157]。これは、発生過程における初期卵割のパターンが螺旋卵割であることや、頭部の背側にある繊毛環がトロコフォア幼生の口後繊毛環と共通していることからも支持される[190]。しかしその中でもどの系統的位置に来るかはまだ異説が多い[190]。この理由として、重複遺伝子を多く保有することからゲノム重複が起こった可能性があることや、集団内での遺伝的多型が多いことから突然変異率が高い可能性があることが指摘されている[190]。例えば、長枝誘引による悪影響として脱皮動物中の節足動物の枝の中に"mongrel assemblage"という集合ができてしまった結果がある[193]。この中には多足類コムカデ類とエダヒゲムシ類だけでなく、脱皮動物の中でも有爪動物HanseniellaAllopuropus冠輪動物である軟体動物頭足類コウモリダコ Vampyroteuthis およびオウムガイ Nautilus、そして毛顎動物Sagitta が含まれていた[193]。また、この集合はCG-richグアニンおよびシトシンが多い)であった[193]。このように、毛顎動物の系統関係を特定するのは困難である[190]

脱皮動物

体を覆うクチクラの脱皮を行うという共通の特徴を持ち[194][195][196]、糸形動物(広義の線形動物)、有棘動物、汎節足動物の3つに分類がなされている[194]

糸形動物[10](広義の線形動物[197] Nematozoa[10][197] または Nematoida[10]カイチュウギョウチュウアニサキスなどからなる線形動物門ハリガネムシ目と遊線虫目(オヨギハリガネムシ類)からなる類線形動物門により構成される[198]。例に挙げられた線形動物は寄生性であるが、自由生活を送る線形動物も存在し、一部の自由生活種のみ眼点を持つ[198][199]。糸形動物は硬いクチクラで覆われ、細い体で、循環器や環状筋を欠き、偽体腔で螺旋卵割を行い、鞭毛のない精子を持つなど、多くの形質を共有する[198]。線形動物は種数や個体数が非常に多いと考えられており、少なくとも数万の未知種を有すると考えられている[198]。線形動物は左右相称であると同時に左右および背側の三放射相称でもある[198]

有棘動物 Scalidophora(頭吻動物 Cephalorhyncha)は動吻動物門、鰓曳動物門、胴甲動物門をまとめたグループで、冠棘という主に頭部に数列ある環状に並ぶ棘を持つという形質を共有することから名付けられた[200][201]。冠棘に加え、花状器官という感覚器を持つという形質、頭部が反転可能である形質、偽体腔を持つという形質も共有する[200][202]。しかし、分子系統解析による検証は十分になされていない[10]。胴甲動物は鰓曳動物のロリケイト幼生と形態が類似していることから近縁であると考えられてきたが、近年の分子系統解析では他の脱皮動物に近縁である可能性が示されている[201]

汎節足動物

汎節足動物 Panarthropodaは、動物界最大の門である節足動物を含む系統群である。汎節足動物は体節を持つ事を特徴とする[203]環形動物も体節を持つため、歴史的には環形動物も節足動物に近縁(体節動物)であると考えられていたが、分子系統解析により、近縁性が否定されたため(収斂)、環形動物は汎節足動物ではなく冠輪動物に分類されている[203]

節足動物の系統樹は以下のようになっている[204][205]

節足動物

三葉虫類(?)

鋏角類

ウミグモPycnogonida

カブトガニ類 Xiphosura

クモガタ類(蛛形類) Arachnida

Chelicerata
大顎類

多足類 Myriapodaムカデ類、ヤスデ類・エダヒゲムシ類・コムカデ

汎甲殻類

貧甲殻上綱 Oligostracaウオヤドリエビ綱鰓尾亜綱舌虫亜綱)・貝形虫綱・ヒゲエビ綱

甲殻類
"Crustacea"

多甲殻上綱 Multicrustaceaカイアシ綱鞘甲綱軟甲綱

異エビ上綱

カシラエビ綱 Cephalocarida

鰓脚綱 Branchiopoda[注釈 26]

ムカデエビ綱 Remipedia

六脚綱 Hexapoda昆虫類コムシ目カマアシムシ目トビムシ目

Allotriocarida
Altocrustacea
Pancrustacea
Mandibulata
Arthropoda

六脚類は広義の昆虫類で内顎類トビムシカマアシムシコムシ、側系統)と外顎類(狭義の昆虫類)に分かれる[206]。甲殻類はエビ・カニ類ミジンコ類など。汎甲殻類における六脚類の系統位置は議論の的となり[207]、初期の分子系統解析では鰓脚綱に近縁とされていたが、後に更なる全面的な解析が行われ、2019年現在に至って脳の構造に共通性を持つ[206]ムカデエビ綱が六脚類の姉妹群として有力候補と見なされる[207][208]

汎節足動物節足動物門以外には緩歩動物門有爪動物門を含む。絶滅した群まで範囲を広げると葉足動物と呼ばれる古生物をも含む。緩歩動物門に属する動物はクマムシと呼ばれる動物であり[209]、ゆっくり歩く事からその名が名付けられた。陸上に生息する種では、クリプトビオシスという極限状態に耐えられる休眠状態になる事が知られている[209]有爪動物門に属する動物はカギムシと呼ばれ、現生種は真有爪目のみ[210]

カンブリア紀に多様化した葉足動物は、現生の汎節足動物の3つの動物門、いわゆる節足動物緩歩動物有爪動物のそれぞれの最後の共通祖先を含んだ側系統群であると考えられる[138][139][211]。多くの葉足動物は一見で現生の有爪動物らしい外見をもち[139]、かつては原始的な有爪動物として分類された[139][212]。しかしその後、節足動物緩歩動物らしい形質をもつ葉足動物の発見に至り[213][214][215][216][217]、葉足動物と有爪動物の多くの共通点は、両者の系統的類縁関係を反映していない、汎節足動物共有原始形質と見なされるようになった[211]

螺旋動物

螺旋動物の系統関係
ラーマーら (2019)に基づく分子系統樹の例[74][157] Marlétaz et al. (2019)に基づく分子系統樹の例[74]
螺旋動物

毛顎動物

担顎動物 Gnathifera

顎口動物

微顎動物

輪形動物

扁形動物

吸啜動物 Rouphozoa

腹毛動物

内肛動物

有輪動物

軟体動物

紐形動物

環形動物

腕足動物

触手冠動物 Lophophorata

箒虫動物

苔虫動物

螺旋動物

毛顎動物

担顎動物 Gnathifera

顎口動物

微顎動物

輪形動物

軟体動物

Tetraneuralia

内肛動物

腹毛動物

腕足動物

苔虫動物

箒虫動物

触手冠動物 Lophophorata

環形動物

扁形動物

Parenchymia

紐形動物

このクレードに属するほとんどが、胚発生において4細胞期から8細胞期に有糸分裂紡錘体が動物極-植物極軸と45°ずれる螺旋卵割を行うという共有派生形質をもつため[注釈 27]螺旋動物[10](らせんどうぶつ)もしくは螺旋卵割動物[151](らせんらんかつどうぶつ) Spiraliaと呼ばれる[74][219][220]。これを指して冠輪動物 Lophotrochozoa s.l. と呼ぶ場合もあるが[74]、本項を含め、「冠輪動物」の名称を螺旋動物のサブクレードに用いるケースもあるので注意が必要である[注釈 25]

螺旋動物は担顎動物(たんがくどうぶつ、Gnathifera)、吸啜動物(きゅうてつどうぶつ、Rouphozoa)、冠輪動物(かんりんどうぶつ、Lophotrochozoa)という3つの系統を含む[151]。冠輪動物は上記の螺旋動物を指すこともあるため、担輪動物(たんりんどうぶつ、Trochozoa)とも呼ぶ[10]。前者2つを合わせたものを扁平動物 Platyzoa と呼ぶこともあるが[149][166]ギリベ (2016)などでは採用されていない。逆に他の解析では担顎動物を除く吸啜動物と冠輪動物がクレードをなすことがあり、その場合、それらを合わせて Platytrochozoa と呼ばれる[219]

担顎動物(有顎動物[140])は微小な体で、クチクラの中にオスミウム酸親和性のある物質が詰まった棒状構造からなる顎を持つという形質を共有する[221][140]顎口動物は咽頭に複雑な顎を持つ動物で、体表面の単繊毛上皮によって移動する[222]微顎動物は複雑な顎を備え、体の腹面に繊毛を持つ[140][151]輪形動物は単生殖巣類、ヒルガタワムシ類、ウミヒルガタワムシ類からなり、ウミヒルガタワムシ類と鉤頭動物が姉妹群をなす[151]鉤頭動物は独立した門とされていたが、そのような系統関係から輪形動物に内包されるか、輪形動物とともに共皮類(多核皮動物[221]Syndermata としてまとめられる[151]。微顎動物および鉤頭動物は体内受精ののちに螺旋卵割を行う[222][221]

吸啜動物に含まれる扁形動物と腹毛動物はともにメイオファウナの重要な構成種で、2つの腺により吸着する (duo-gland adhesive system)形質がその共有派生形質ではないかと考えられている[223]

冠輪動物(担輪動物)のうち環形動物と軟体動物はトロコフォア型の幼生を持つという共有派生形質を持つ[224]紐形動物は翻出する吻を持ち、かつては無体腔と考えられたが、現在では吻が収納される吻腔が裂体腔であると考えられている[224]。冠輪動物のうち、箒虫動物・苔虫動物(外肛動物)・腕足動物は何れも触手冠と呼ばれる構造を持つため触手冠動物 Lophophorataと呼ばれ、分子系統解析でも支持されることがある[10][157][225]。冠輪動物はもともと担輪動物と触手冠動物の2つの系統を合わせて呼ばれるようになった語である[178]。分子系統解析の結果、苔虫動物は内肛動物と姉妹群をなす(広義の苔虫動物)とされ否定されたこともあったが[10][225]ラーマーら (2019)などでは単系統性が示されている[157]。また、有輪動物内肛動物と姉妹群をなすことが示唆されている[157][193]

軟体動物

受精から9時間の海洋性の腹足類 Haliotis asinina のトロコフォア

冠輪動物に属する軟体動物門は節足動物門に次いで既知種の大きい門で、骨格を持たず、体節がない軟体からなる[226]。体腔は真体腔であるが退化的で、体内の腔所は組織の間隙を血液が流れるだけの血体腔である[226]。一般的には体は頭部、内臓塊、足からなり、外套膜が内臓塊を覆っている[226]。外套膜が分泌した石灰質の貝殻を持つ事が多い[226]。卵割は普通全割の螺旋卵割であるが、頭足類では胚盤をもつ盤割となる[226]

軟体動物の分類は系統解析により一部修正が施され2018年現在は体全体を覆う大きな殻がある有殻類と石灰質の棘を持つ有棘類に大きく分かれるという仮説が有力視されている[227]

軟体動物の綱は以下のように分類される[227]

軟体動物
有殻類

腹足綱単板綱頭足類掘足綱二枚貝綱

Conchifera
有棘類

尾腔綱、溝腹綱多板綱

Aculifera

有殻類は綱レベルの単系統性は多くの場合保証されているが、各綱の系統関係は2018年現在一致を見ていない[227]

環形動物

環形動物は環帯類貧毛綱(=ミミズ)ヒル綱)、多毛類(=ゴカイ)、スイクチムシ類を含む門である。かつては独立した門だと思われていた有鬚動物(ゆうしゅどうぶつ、現シボグリヌム科)、ユムシ動物星口動物を含むことが分子系統解析から分かり、多毛類がそれらの分類群をすべて内包し、多系統である事もわかった[10][228]

Rouse and Fauchald (1997)による形態に基づく従来の系統関係は次の通りである[228][注釈 28]

星口動物 Sipuncula

ユムシ動物 Echiura

有爪動物 Onychophora

節足動物 Euarthropoda

狭義の環形動物

環帯類 Clitellata

多毛類

頭節綱 Scolecida:ヒトエラゴカイ目 Cossurida・ホコサキゴカイ目 Orbiniida・オフェリアゴカイ目 Opheliida・イトゴカイ目 Capitellida

足刺綱 Aciculataイソメ目 Eunicida・サシバゴカイ目 Phyllodcida

溝副触手綱 Canalipalpata:ケヤリ目 Sabellidaシボグリヌム科 Siboglinidaeを含む)・フサゴカイ目 Terebellida・スピオ目 Spionida

Polychaeta
Annelida

分子系統解析に基づく系統樹は次の通りである[228][注釈 29]

環形動物

Palaeoannelida:チマキゴカイ科 Oweniidae・モロテゴカイ科 Magelonidae

ツバサゴカイ科 Chaetopteridae

星口動物 Sipuncula

ウミケムシ科 Amphinomidae

遊在類

スイクチムシ類 Myzostomida

プロトドリロイデス科 Protodriloidae・プロトドリルス科 Protodrilidae・ムカシゴカイ科 Saccocirridae・イイジマムカシゴカイ科 Polygordiidae

足刺類 Aciculata(上図足刺綱に対応)

Errantia
定在類

環帯類 Clitellata・フサゴカイ亜目 Terebelliformia・タマシキゴカイ科 Arenicolidae・タケフシゴカイ科 Maldanidae

ユムシ動物 Echiura・イトゴカイ科 Capitellidae・オフェリアゴカイ科 Opheliidae

スピオ科 Spionidae・カンムリゴカイ科 Sabellariidae・カンザシゴカイ科 SerpulidaeFabriciidae・ケヤリ科 Sabellidae

シボグリヌム科 Siboglinidae(有鬚動物)・ミズヒキゴカイ亜目 Cirratuliformia

ホコサキゴカイ科 Orbiniidae・パレルゴドリルス科 Parergodrilidae・ディウロドリルス科 Diurodrilidae・ウジムカシゴカイ科 Dinophilidae・ホラアナゴカイ科 Nerillidae

Sedentaria
Pleistoannelida
Annelida

二胚動物・直泳動物

吸啜動物

腹毛動物

扁形動物

「中生動物」

二胚動物

直泳動物

"Mesozoa"
二胚動物と直泳動物を吸啜動物の姉妹群とする分子系統樹の例[158]

分子系統解析から、かつて中生動物とされていた二胚動物および直泳動物はともに螺旋動物に属することが支持されている。ただし、その中でも、二胚動物と直泳動物は姉妹群「中生動物」となり、さらにそれが吸啜動物と姉妹群をなすという結果もあれば[158]、直泳動物は環形動物に内包され、環形動物の極端に退化した形と考えられることもあり[159]、まだ決着はついていない。

後口動物

前口動物(上図、Protostomes)と後口動物(下図、Deuterostomes)の発生。
8細胞期 (Eight-cell stage)では前者は螺旋卵割 (spiral cleavage)、後者は放射卵割 (radial cleavage)を行う。原腸陥入 (gastrulation)においても体腔 (Coelum)のできる位置が異なることが多く、前者では基本的に裂体腔で後者では基本的に腸体腔である[注釈 30]。また、名の由来の通り前者では原口 (Blastopore)が口 (Mouth)となるのに対し、後者では原口が肛門 (Anus)となる。
ディプリュールラ幼生。トロコフォア幼生と対置される。

後口動物(新口動物)は棘皮動物門半索動物門脊索動物を含み、新口動物とも呼ばれる[149][230]ヘッケルは新口動物の共通祖先から脊索動物が進化した過程を論じた際、棘皮動物の幼生[注釈 31] と半索動物のトルナリア幼生が共有する形質を合わせて、それらの祖先型として、ディプリュールラ幼生 (Dipleurula)という仮想的な幼生を考えた[231]。ディプリュールラ幼生はトロコフォア幼生と同様に口から肛門に至る消化管、頂器官に感覚器としての長い繊毛、口を中心とした繊毛帯(または繊毛環)、体後端部の端部繊毛帯を持つが、ディプリュールラ幼生では3部性の体腔(原体腔・中脳腔・後脳腔)を持つことおよび繊毛帯の走り方が異なる[231][232][233]

2018年現在、棘皮動物と半索動物が姉妹群をなすという説が大勢を締めており[10][234]、これら2つをあわせて水腔動物 Coelomoporaという[10]

後口動物は胚発生において陥入によってできた原口が口になる前口動物に対し、原口が口にならず新たに口が開く動物であり、かつては現在後口動物とされる棘皮動物、半索動物、脊索動物だけでなく、触手冠動物としてまとめられる箒虫動物苔虫動物(外肛動物)、腕足動物、そして毛顎動物を含んでいた[230][235]。これはブルスカとブルスカ (1990)、メルグリッチとシュラム (1991)などによる形態形質に基づく系統解析でも、原口に由来しない口を持つだけでなく、原腸由来の中胚葉を持つことや腸体腔を持つことなどの形質からも支持されていた[235]。ほかにも、放射卵割を行うなど[74]、後口動物としての性質を多く持っている。しかし分子系統解析の進展により、触手冠動物および毛顎動物は前口動物に属すると考えられるようになった[74][218][236]。この変更以降も「後口動物」という系統群名を用いるが[237][238][239][240][240][241][242][243] 、毛顎動物や腕足動物のような原口が口にならない動物も前口動物に含まれ[74]、単純に原口の有無が系統を反映しているわけではない。

水腔動物

水腔動物 Coelomopora歩帯動物 Ambulacraria)は幼生の形態、三体腔性、軸器官などの形質を共有する[234][10]

棘皮動物は、成体が五放射相称、三胚葉性で、内胚葉由来の中胚葉(内中胚葉)を持つ[244]。腸体腔性の体腔で、体腔に由来する水管系と呼ばれる独自の構造をもつ[244][245]。神経系は中枢神経を持たず、神経環と放射神経からなるが、ウミユリ綱では神経節を持つ[244]ウミユリ綱ヒトデ綱クモヒトデ綱ナマコ綱ウニ綱からなり、分子系統解析によりこれらのうちウミユリ綱が最も祖先的だと考えられている[244][245]。ウニ綱のうちタコノマクラ類やブンブク類では五放射相称が歪み左右相称性を示す[245]

現生の半索動物はギボシムシ綱(腸鰓綱)とフサカツギ綱(翼鰓綱)からなり、化石ではフデイシ綱が置かれる[246][247]。どちらも体は前体・中体・後体の3つの部分に分かれるという共通した形質を持ち、前者では吻・襟・体幹と呼ばれ、後者では頭盤・頸・体幹と呼ばれる[246]。ギボシムシ綱では腸体腔と裂体腔をもつとされるが、体腔形成には不明な点も多い[246]。ギボシムシ綱は側系統で、ギボシムシ綱のハリマニア科がフサカツギ綱と姉妹群をなし、フサカツギ綱はギボシムシ綱から小型化によって体が二次的に単純化したと考えられる[246]。半索動物は脊索動物と同様に鰓裂を持つ[247][248]。かつては口盲管という器官が脊索の一種と考えられたこともあったが[246]、口盲管と脊索との関係を支持する発生遺伝学的研究結果はなく[248]、現在では脊索を持たないとされる[247]

脊索動物

脊索動物 Chordata頭索動物尾索動物(被嚢動物)・脊椎動物を含むクレードで、一生のうち少なくとも一時期に鰓裂・脊索およびその背側に背側神経管を持つという形質を共有する[247][249]。脊索は膨らませた細長い風船に喩えられる中軸器官で、脊索鞘という繊維質の頑強な膜に脊索細胞が包まれている[247]。頭索動物および尾索動物がもつ内柱は脊椎動物における甲状腺と相同で、甲状腺は内柱の変化したものと考えられている[249]。発生はさまざまであるが発生の一時期には肛門の後方に筋肉により運動する尾状部分があり、オタマジャクシ型幼生(tadpole larva)を経る[249]

脊索動物は脊索と背側神経管という共通する二つの特徴をもつことから1つの門に置かれ、その中の3群は亜門に置かれてきたが、佐藤矩行・西川輝昭 (2014)により、分子系統学的解析および3群がそれぞれ特徴的な形質を持つことに基づいて脊索動物をよ り高次の上門に置き、3群を門に格上げする考えが提唱された[247][250][251]

以下の3つに分類される[10][249][247]

脊索動物

頭索動物:一生、全体長に渡って脊索を持つ。ナメクジウオの仲間

オルファクトレス

尾索動物:一生(オタマボヤ綱)ないし一時期に尾部に脊索を持つ。ホヤ綱[注釈 32]オタマボヤ綱タリア綱ヒカリボヤウミタルサルパなど)からなる。

脊椎動物:脊索の周囲に脊椎が形成される。無顎類ヌタウナギ類ヤツメウナギ類軟骨魚類硬骨魚類条鰭類肉鰭類シーラカンス目ハイギョ目四肢動物)からなる。

Olfactores

尾索動物と頭索動物はかつてまとめて原索動物と呼ばれていた[218]。ホヤ類と頭索動物はともに囲鰓腔を持ち濾過摂食を行うが、後者は肛門が独立して体外に開くことと雌雄異体であることで異なる[247]

脊椎動物から四肢動物を除いたグループは伝統的に魚類と呼ばれ、分岐分類学的には四肢動物は硬骨魚類に含まれるため、側系統群となる[249][252]。同様に四肢動物は両生類爬虫類鳥類哺乳類からなるが[249][252]、このうち爬虫類は羊膜類から鳥類と両生類を除いた側系統群である[249][253]


地質時代先カンブリア時代[* 1][* 2]
累代 [* 3] 基底年代
Mya[* 4]
顕生代 新生代 66
中生代 251.902

古生代 541
原生代 新原生代 エディアカラン 635
クライオジェニアン 720
トニアン 1000
中原生代 ステニアン 1200
エクタシアン 1400
カリミアン 1600
古原生代 スタテリアン 1800
オロシリアン 2050
リィアキアン 2300
シデリアン 2500
太古代(始生代) 新太古代 2800
中太古代 3200
古太古代 3600
原太古代 4000
冥王代 4600
  1. ^ 基底年代の数値では、この表と本文中の記述では、異なる出典によるため違う場合もある。
  2. ^ 基底年代の更新履歴
  3. ^ 顕生代は省略、太古代は無し
  4. ^ 百万年前

注釈

  1. ^ 左上から順に、1段目:ヒトデの一種(棘皮動物門星形動物亜門ヒトデ綱)、クダカイメン Aplysina fistularis海綿動物門)、セイヨウダンゴイカ Sepiola atlantica軟体動物門頭足綱)、
    2段目:ミズクラゲ Aurelia aurita刺胞動物門鉢虫綱)、の一種 Hypercompe scribonia節足動物門六脚亜門昆虫綱)、ゴカイの一種 Nereis succinea環形動物門多毛綱)、
    3段目:ヒレジャコ Tridacna squamosa軟体動物門二枚貝綱)、シベリアトラ脊索動物門脊椎動物亜門哺乳綱)、ホヤの一種Polycarpa aurata脊索動物門尾索動物亜門ホヤ綱)、
    4段目:クマムシの一種(緩歩動物門異クマムシ綱)、淡水産コケムシの一種(外肛動物門掩喉綱)、ウツボの一種 Enchelycore anatina脊索動物門脊椎動物亜門条鰭綱)、
    5段目:カニの一種 Liocarcinus vernalis節足動物門甲殻亜門軟甲綱)、鉤頭動物の一種 Corynosoma wegeneri輪形動物門古鉤頭虫綱)、アオカケス脊索動物門脊椎動物亜門鳥綱)、
    6段目:ハエトリグモの一種(節足動物門鋏角亜門蛛形綱)、ヒラムシの一種 Pseudoceros dimidiatus扁形動物門渦虫綱)、ホウキムシ類のアクチノトロカ幼生(箒虫動物門
  2. ^ 古典ラテン語の中性第三活用(i音幹)名詞 animal, is, n複数主格
  3. ^ 明治以前の日本では、中国本草学の影響により生物各群を草・虫・魚・獣などと並列的に扱うことが一般的であり、生物を動物と植物に大別することは西欧の学問の流入以降に普及した考えである[1]
  4. ^ 原生動物は進化的に異なる雑多な生物をまとめたグループ(多系統群)であり、ミニステリアなどの一部の生物を除き後生動物とは系統的に遠縁である。
  5. ^ この「ランク」は流動的な分類群の実情に合わせ、リンネ式階層分類のように絶対的な階層をもたない[9]
  6. ^ 幼生中胚葉 (larval mesoderm)または中外胚葉 (mesectoderm)とも呼ばれる[35]
  7. ^ 真の中胚葉 (true mesoderm)または中内胚葉 (mesendoderm)とも呼ばれる[35]
  8. ^ 哺乳類のように卵黄が僅かな場合は無黄卵 alecithal eggと呼ばれる[72]
  9. ^ 中黄卵と呼ぶこともあるが、この語は中位の卵黄量を持つ mesolecithal にも用いられる[72]
  10. ^ 卵割腔も blastocoelと呼ばれ、区別されない[76]
  11. ^ 藤田 (2010)では、分子系統解析によればこれらの動物門は最古の化石より10億年以上遡ると推測されている[125]とあるが、これは正しくない。
  12. ^ 有爪動物緩歩動物節足動物
  13. ^ ガッコウチュウと呼ばれることもあるが[140]、顎口虫は線形動物の寄生虫 Gnathostoma にも用いられる[141]
  14. ^ a b 刺胞動物有櫛動物は外見が類似しているので腔腸動物門としてまとめられていたが、有櫛動物は刺胞がなく、上皮細胞が多繊毛性であり、決定性卵割であるといった刺胞動物との決定的違いがあり、しかも分子系統解析により腔腸動物が単系統とならないことがわかったので両者は別の門として分けられている[142]
  15. ^ かつて扁形動物門に分類されていた珍渦虫無腸動物を新たな門として立てたもの[143]。その系統的位置に関しては、左右相称動物の最も初期に分岐したとする説[144][145] と後口動物の一員であるとする説[146][147] がある。
  16. ^ a b c 脊椎動物・頭索動物・尾索動物の3門を亜門とし、まとめて脊索動物門とすることも多い。詳しくは#脊索動物を参照
  17. ^ a b 直泳動物門と二胚動物門はかつて中生動物門とされており[149]原生動物から後生動物に進化する過程であると過去には見られていたが、2010年現在では寄生生活により退化した後生動物(螺旋動物)であると見られている[150]
  18. ^ 鉤頭動物 Acanthocephalaは輪形動物に内包され、狭義の輪形動物は側系統となる。狭義の輪形動物および鉤頭動物を門として残し、広義の輪形動物を共皮類 Syndermata とすることもある[151]
  19. ^ 星口動物ユムシ動物有鬚動物は過去には門として立てられていた事もあるが、2018年現在は環形動物門の一部とみなされている[152]
  20. ^ ギリベ (2016)における系統仮説では有輪動物の系統位置が不明であり前口動物内に曖昧さをもって置かれるが、ラーマーら (2019)でははっきりと内肛動物との単系統性を示すため、これを反映した。また、ギリベ (2016)における系統仮説では苔虫動物と内肛動物が姉妹群をなすが、ラーマーら (2019)では苔虫動物と箒虫動物が姉妹群となり、それに腕足動物を加えた単系統群(lophophorate clade[157]、触手冠動物[10])が強く支持され、内肛動物はそれと姉妹群をなす結果はあるもののそうでない結果もあることから、ラーマーら (2019)の系統樹を優先して変更した。
  21. ^ 後口動物の水腔動物と姉妹群をなすという結果もある[147]
  22. ^ 前口動物内での位置は未確定[10][156] だが、担顎動物に近縁という結果がある[157]
  23. ^ 前口動物内での位置は未確定[10][156] だが、吸啜動物に近縁[158] または環形動物に内包される[159] という結果がある。
  24. ^ 前口動物内での位置は未確定[10][156] だが、吸啜動物に近縁という結果がある[158]
  25. ^ a b c 螺旋動物は冠輪動物と呼ばれる事もある[10]。その場合本項の系統樹に登場する冠輪動物は担輪動物と呼び変えられる[10]
  26. ^ この系統樹は主に Oakley et al. (2013)に基づくもので、Regier et al. (2010)などでは鰓脚綱は多甲殻類とともにとクレードをなし、真甲殻上綱 Vericrustaceaとして扱われる[204]
  27. ^ ただし、螺旋動物のうち、触手冠動物の腕足動物などでは放射卵割を行い[74]、脱皮動物でも線形動物のように螺旋卵割を行うものも存在する[218]。かつては前口動物の持つ形質だとみなされていたが、おそらく螺旋動物の持つ共有派生形質である[74]
  28. ^ 和名は『岩波生物学辞典 第5版』(2013)に基づく[229]
  29. ^ 多くが科名の列記になっているのはそれらをまとめた高次分類群は未だ命名されていないためである[228]
  30. ^ 例外も多く、例えば尾索動物では後口動物ながら真体腔は裂体腔的に生じる。
  31. ^ ドリオラリア幼生(ウミユリ、ナマコ)、オーリクラリア幼生(ナマコ)、ビピンナリア幼生(ヒトデ)、オフィオプルテウス幼生(クモヒトデ)、プルテウス幼生(エキノプルテウス、ウニ)などがあり、ドリオラリア型やオーリクラリア型のものが原始的であると考えられている
  32. ^ ただしホヤ綱は残りの両者を内部の別のクレードに含む側系統群[247]

種名

  1. ^ クダカイメン Aplysina fistularis
  2. ^ カイロウドウケツ Euplectella aspergillum
  3. ^ キタカブトクラゲ Bolinopsis infundibulum
  4. ^ アトランティックシーネットル Chrysaora quinquecirrha
  5. ^ 複数種(イシサンゴ目
  6. ^ センモウヒラムシ Trichoplax adherens
  7. ^ Waminoa sp.
  8. ^ ニッポンチンウズムシ Xenoturbella japonica
  9. ^ アカヒトデ Certonardoa semiregularis
  10. ^ ニセクロナマコ Holothuria leucospilota
  11. ^ ナガウニ Echinometra mathaei
  12. ^ 腸鰓綱の一種(未同定)
  13. ^ ナメクジウオ Branchiostoma lanceolatum
  14. ^ Symplegma rubra
  15. ^ ウシ Bos taurus
  16. ^ イソヤムシ Spadella cephaloptera
  17. ^ ヤギツノトゲカワ Echinoderes hwiizaa
  18. ^ エラヒキムシ Priapulus caudatus
  19. ^ Pliciloricus enigmatus
  20. ^ ヒトカイチュウ Ascaris_lumbricoides
  21. ^ Paragordius tricuspidatus
  22. ^ Hypsibius dujardini
  23. ^ Peripatoides indigo
  24. ^ ヨーロッパクロスズメバチ Vespula germanica
  25. ^ オオズワイガニ Chionoecetes bairdi
  26. ^ Rhopalura ophiocomae
  27. ^ ヤマトニハイチュウ Dicyema japonicum
  28. ^ パンドラムシ Symbion pandora
  29. ^ Gnathostomula paradoxa
  30. ^ コアゴムシ[140] Limnognathia maerski
  31. ^ カドツボワムシ Brachionus quadridentatus
  32. ^ Lepidodermella squamata
  33. ^ Schmidtea mediterranea
  34. ^ 無鉤条虫 Taenia saginata
  35. ^ ホタテガイ Mizuhopecten yessoensis
  36. ^ ヨーロッパヤリイカ Loligo vulgaris
  37. ^ オウシュウツリミミズ Lumbricus terrestris
  38. ^ セイヨウカワゴカイ Hediste diversicolor
  39. ^ ユムシ Urechis unicinctus
  40. ^ スジホシムシSipunculus nudus
  41. ^ ミサキヒモムシ Notospermus geniculatus
  42. ^ ミドリシャミセンガイ Lingula anatina
  43. ^ ホウキムシ Phoronis hippocrepia
  44. ^ オオマリコケムシ Pectinatella magnifica
  45. ^ スズコケムシ Barentsia discreta

出典

  1. ^ a b c d e f g 巌佐ほか 2013, p. 994.
  2. ^ a b 動物(どうぶつ)とは”. コトバンク. 2018年7月18日閲覧。より『デジタル大辞泉』の解説。
  3. ^ 八杉貞夫 (2018), “動物学の歴史 ―2000年の動物学史のエッセンス”, p. 2  in 日本動物学会 2018
  4. ^ 藤田 2010, p.91
  5. ^ Lisa A. Urry; Michael L. Cain; Steven A. Wasserman; Peter V. Minorsky; Jane B. Reece 池内昌彦、伊藤元己、箸本春樹 、道上達男訳 (2018-3-20). キャンベル生物学 原書11版. 丸善出版. p. 655. ISBN 978-4621302767 
  6. ^ P. レーヴン; J. ロソス; S. シンガー; G. ジョンソン (2007-05-01). レーヴン ジョンソン 生物学〈下〉(原書第7版). 培風館. p. 518 
  7. ^ 中学校理科教科書「未来へ広がるサイエンス」”. 啓林館. 2018年7月11日閲覧。
  8. ^ a b c d e Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric et al. (2019). “Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes”. Journal of Eukaryotic Microbiology 66: 4-119. 
  9. ^ a b 矢﨑裕規・島野智之 (2020). “真核生物の高次分類体系の改訂 ―Adl et al. (2019)について―”. タクサ 48: 71-83. 
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad 角井敬知 (2018), “動物界の分類群・系統 ―いまだに解けない古い関係”, pp. 54-57  in 日本動物学会 2018
  11. ^ 藤田 2010, p.99
  12. ^ Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D. et al.. “A Higher Level Classification of All Living Organisms”. PLoS ONE 10 (4): 1-60. doi:10.1371/journal.pone.0119248. 
  13. ^ Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; DÖring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin et al. (2018). “High-level classification of the Fungi and a tool for evolutionary ecological analyses”. Fungal Diversity 90: 135-159. doi:10.1007/s13225-018-0401-0. 
  14. ^ 巌佐ほか 2013, p. 1552.
  15. ^ 動物命名法国際審議会 2005, 条1.
  16. ^ 動物命名法国際審議会 2005, 表紙.
  17. ^ 動物命名法国際審議会 2005, 条1.1.1.
  18. ^ 動物命名法国際審議会 2005, 用語集.
  19. ^ 中野隆文 (2018), “種と学名,高次分類群 ―動物の名称と名称に関するルール”, pp. 46-47  in 日本動物学会 2018
  20. ^ Avila, Vernon L. (1995). Biology: Investigating Life on Earth. Jones & Bartlett Learning. pp. 767–. ISBN 978-0-86720-942-6. https://books.google.com/books?id=B_OOazzGefEC&pg=PA767 
  21. ^ a b Palaeos:Metazoa”. Palaeos. 2018年2月25日閲覧。
  22. ^ Bergman, Jennifer. “Heterotrophs”. 2007年8月29日時点のオリジナルよりアーカイブ。2007年9月30日閲覧。
  23. ^ Mentel, Marek; Martin, William (2010). “Anaerobic animals from an ancient, anoxic ecological niche”. BMC Biology 8: 32. doi:10.1186/1741-7007-8-32. PMC 2859860. PMID 20370917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859860/. 
  24. ^ Saupe, S. G.. “Concepts of Biology”. 2007年9月30日閲覧。
  25. ^ Minkoff, Eli C. (2008). Barron's EZ-101 Study Keys Series: Biology (2nd, revised ed.). Barron's Educational Series. p. 48. ISBN 978-0-7641-3920-8 
  26. ^ 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 14-25  in 岩槻・馬渡 2000
  27. ^ a b c d e f g h i 藤田 2010, pp.102-106
  28. ^ 浅島・駒崎 2011, p.49
  29. ^ a b c d e f 濱田博司 (2018), “左右軸形成 ―なぜ心臓や胃は左に?”, pp. 308-309  in 日本動物学会 2018
  30. ^ a b c 巌佐ほか 2013, p. 1401.
  31. ^ a b c d e f g h i 松尾勲 (2018), “頭尾軸・背腹軸形成 ―動物界に共通する普遍的な体制”, pp. 304-307  in 日本動物学会 2018
  32. ^ a b 佐藤ほか 2004, pp.30-37
  33. ^ a b c d 佐藤ほか 2004, pp.38-41
  34. ^ a b c d e f g 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 16-17  in 岩槻・馬渡 2000
  35. ^ a b c d e f g h i j k l m n o p q r 久米・團 (1957), 総説, pp. 35-37  久米・團 1957
  36. ^ a b c d 佐藤ほか 2004, p.11
  37. ^ a b c 駒崎伸二・浅島誠 (2018), “胚葉形成 ―動物の体をつくる基本作業”, pp. 296-299  in 日本動物学会 2018
  38. ^ a b c d e f g 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 19-20  in 岩槻・馬渡 2000
  39. ^ 巌佐ほか 2013, p. 848.
  40. ^ a b Kozloff 1990, pp.7-8
  41. ^ a b 巌佐ほか 2013, p. 405.
  42. ^ 松本信二、船越浩海、玉野井逸朗『細胞の増殖と生体システム』学会出版センター、1993年、初版。ISBN 4-7622-6737-6 pp.47-50、3.細胞の微細構造とその機能、3.1.細胞と膜
  43. ^ 武村政春『DNAを操る分子たち』技術評論社、2012年、初版第1刷。ISBN 978-4-7741-4998-1 pp.14-24、第1章 エピジェネティクスを理解するための基礎知識、1-1 DNAとセントラルドグマ
  44. ^ 松本信二、船越浩海、玉野井逸朗『細胞の増殖と生体システム』学会出版センター、1993年、初版。ISBN 4-7622-6737-6、pp.53-56、3.細胞の微細構造とその機能、3.3.真核生物、3.3.1真核生物の構造と機能概説
  45. ^ 井出利憲『細胞の運命Ⅳ細胞の老化』サイエンス社、2006年、初版。ISBN 4-7819-1127-7 pp.65-75、第6章 テロメアとは何か
  46. ^ 『生化学辞典第2版』東京化学同人、1995年、第2版第6刷。ISBN 4-8079-0340-3、p.534 【細胞骨格タンパク質】
  47. ^ 林純一「ミトコンドリアDNAに突然変異をもつ細胞は自然免疫により排除されることを発見」筑波大学生命科学研究科発表 「Journal of Experimental Medicine」電子版 2011.Oct.12
  48. ^ 黒岩常祥『ミトコンドリアはどこからきたか』日本放送出版、2000年6月30日第1刷発行。ISBN 4140018879
  49. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (4th ed.). Garland Science. ISBN 0-8153-3218-1. https://www.ncbi.nlm.nih.gov/books/NBK26810/ 
  50. ^ Sangwal, Keshra (2007). Additives and crystallization processes: from fundamentals to applications. John Wiley and Sons. p. 212. ISBN 978-0-470-06153-4 
  51. ^ Magloire, Kim (2004). Cracking the AP Biology Exam, 2004–2005 Edition. The Princeton Review. p. 45. ISBN 978-0-375-76393-9 
  52. ^ Starr, Cecie (2007-09-25). Biology: Concepts and Applications without Physiology. Cengage Learning. pp. 362, 365. ISBN 0495381500. https://books.google.com/?id=EXNFwB-O-WUC&pg=PA362 
  53. ^ Knobil, Ernst (1998). Encyclopedia of reproduction, Volume 1. Academic Press. p. 315. ISBN 978-0-12-227020-8 
  54. ^ a b c d e f g h i j k l m n 小林一也 (2018), “有性生殖と無性生殖 ―生殖戦略の多様性”, pp. 274-275  in 日本動物学会 2018
  55. ^ Hamilton, Matthew B. (2009). Population genetics. Wiley-Blackwell. p. 55. ISBN 978-1-4051-3277-0 
  56. ^ a b 巌佐ほか 2013, p. 638.
  57. ^ a b c 巌佐ほか 2013, p. 744.
  58. ^ 巌佐ほか 2013, pp. 1105–1106.
  59. ^ a b c 浅島・駒崎 2011, p.33
  60. ^ a b c d e 浅島誠・駒崎伸二 (2018), “さまざまな動物の発生 ―卵から形づくりの始まり”, pp. 270-273  in 日本動物学会 2018
  61. ^ 巌佐ほか 2013, p. 1313.
  62. ^ a b 久米・團 (1957), 総説, p. 371  久米・團 1957
  63. ^ 巌佐ほか 2013, p. 1430.
  64. ^ a b c d e f g h i j k l m Kozloff 1990, pp.4-5
  65. ^ a b 巌佐ほか 2013, p. 406.
  66. ^ a b 久米・團 (1957), 総説, pp. 39-40  久米・團 1957
  67. ^ 巌佐ほか 2013, p. 1397.
  68. ^ 巌佐ほか 2013, p. 923.
  69. ^ a b c d e f g h 久米・團 (1957), 総説, pp. 28-31  久米・團 1957
  70. ^ a b c d e 巌佐ほか 2013, p. 1443.
  71. ^ a b c d e f g h i j k l Kozloff 1990, p.3
  72. ^ a b c d e f 久米・團 (1957), 総説, p. 5  久米・團 1957
  73. ^ a b c d e f g 久米・團 (1957), 総説, pp. 31-33  久米・團 1957
  74. ^ a b c d e f g h i j k l m n o p q r Martín-Durán, José M.; Marlétaz, Ferdinand (2020). “Unravelling spiral cleavage”. Development 147: 1-7. doi:10.1242/dev.181081. 
  75. ^ a b c d 上野秀一 (2018), “卵割 ―大きな卵はなぜ速く分裂するのか”, pp. 294-295  in 日本動物学会 2018
  76. ^ a b c d e f g h i j k l m n o p q r s t u v w x 久米・團 (1957), 総説, pp. 33-35  久米・團 1957
  77. ^ 浅島・駒崎 2011, p.39
  78. ^ 浅島・駒崎 2011, p.42
  79. ^ a b Kozloff 1990, pp.5-7
  80. ^ a b 浅島・駒崎 2011, p.126
  81. ^ a b 浅島・駒崎 2011, p.108
  82. ^ a b 浅島・駒崎 2011, pp.72-73
  83. ^ a b c 浅島・駒崎 2011, p.115
  84. ^ a b c 浅島・駒崎 2011, p.110
  85. ^ 浅島・駒崎 2011, pp.115-117
  86. ^ 浅島・駒崎 2011, p.119
  87. ^ a b c 藤田 2010, pp. 99–101.
  88. ^ a b c 古屋秀隆 (2000), “後生動物の起源”, pp. 106-107  in 岩槻・馬渡 2000
  89. ^ a b c d e f g h i j dos Reis et al. 2015, pp. 2939–2950.
  90. ^ a b 藤田 2010, p. 92.
  91. ^ 土屋 2013, pp. 11–12.
  92. ^ Erwin, D.H.; Laflamme, M.; Tweedt, S.M.; Sperling, E.A.; Pisani, D.; Peterson, K.J. (2011). “The Cambrian conundrum: early divergence and later ecological success in the early history of animals”. Science 334: 1091-1097. 
  93. ^ Budd, G.E. (2008). “The earliest fossil record of the animals and its significance”. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363: 1425-1434. 
  94. ^ a b Maloof, A.C.; Porter, S.M.; Moore, J.L.; Dudas, F.O.; Bowring, S.A.; Higgins, J.A.; Fike, D.A.; Eddy, M.P. (2010). “The earliest Cambrian record of animals and ocean geochemical change”. Geol. Soc. Am. Bull. 122 (11–12): 1731–1774. Bibcode2010GSAB..122.1731M. doi:10.1130/B30346.1. 
  95. ^ a b c d 土屋 2013, pp. 12–13.
  96. ^ a b c Brain, C.K.; Prave, Anthony R.; Hoffmann, Karl-Heinz; Fallick, Anthony E.; Botha, Andre; Herd, Donald A.; Sturrock, Craig; Young, Iain et al. (2012). “The first animals: ca. 760-million-year-old sponge-like fossils from Namibia”. S Afr J Sci. 108 (1/2): 1-8. doi:10.4102/sajs.v108i1/2.658. 
  97. ^ 松本 2015, p.3
  98. ^ Maloof, Adam C.; Rose, Catherine V.; Beach, Robert; Samuels, Bradley M.; Calmet, Claire C.; Erwin, Douglas H.; Poirier, Gerald R.; Yao, Nan et al. (17 August 2010). “Possible animal-body fossils in pre-Marinoan limestones from South Australia”. Nature Geoscience 3 (9): 653–659. Bibcode2010NatGe...3..653M. doi:10.1038/ngeo934. http://www.nature.com/ngeo/journal/v3/n9/full/ngeo934.html. 
  99. ^ Love, G.D.; Grosjean, E.; Stalvies, C.; Fike, D.A.; Grotzinger, J.P.; Bradley, A.S.; Kelly, A.E.; Bhatia, M. et al. (2009). “Fossil steroids record the appearance of Demospongiae during the Cryogenian period”. Nature 457: 718-721. doi:10.1038/nature0767. 
  100. ^ Siegl, A.; Kamke, J.; Hochmuth, T.; Piel, J.; Richter, M.; Liang, C.; Dandekar, T.; Hentschel, U. (2011). “Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges”. ISME J. 5: 61-70. 
  101. ^ 土屋 2013, pp. 13–18.
  102. ^ Xiao, S.; Zhang, Y.; Knol (1998). “Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite”. Nature 391: 553-558. doi:10.1038/35318. 
  103. ^ Butterfield, N.J.. “Paleontology. Terminal developments in Ediacaran embryology”. Science 334: 1655-1656. 
  104. ^ Huldtgren, T.; Cunningham, J.A.; Yin, C.; Stampanoni, M.; Marone, F.; Donoghue, P.C.J.; Bengtson, S. (2011). “Fossilized nuclei and germination structures identify Ediacaran "animal embryos" as encysting protists”. Science 334: 1696-1699. 
  105. ^ Zhang, X.-G.; Pratt, B.R. (2014). “Possible algal origin and life cycle of Ediacaran Doushantuo microfossils with dextral spiral structure”. J. Paleontol. 88: 92-98. 
  106. ^ 土屋 2013, p. 164.
  107. ^ a b c Dunn, Frances S.; Liu, Alexander G.; Donoghue, Philip C. J. (2018). “Ediacaran developmental biology”. Biol. Rev. 93: 914-932. doi:10.1111/brv.12379. 
  108. ^ a b c 土屋 2013, pp. 21–40.
  109. ^ 土屋 2013, p. 28.
  110. ^ Two Explosive Evolutionary Events Shaped Early History Of Multicellular Life
  111. ^ Shen, Bing; Dong, Lin; Xiao, Shuhai; Kowalewski, Michał (2008). “The Avalon Explosion: Evolution of Ediacara Morphospace”. Science 319 (5859): 81–84. Bibcode2008Sci...319...81S. doi:10.1126/science.1150279. PMID 18174439. http://www.sciencemag.org/content/319/5859/81.short. 
  112. ^ Yin, Z.; Zhu, M.; Davidson, E.H.; Bottjer, D.J.; Zhao, F.; Tafforeau, P. (2015). “Sponge grade body fossil with cellular resolution dating 60 Myrbefore the Cambrian”. Proc. Natl. Acad. Sci. USA 112: E1453-E1460. doi:10.1073/pnas.1414577112. 
  113. ^ Antcliffe, J.B.; Callow, R.H.; Brasier, M.D. (2014). “Giving the early fossil record of sponges a squeeze”. Biol. Rev. Camb. Philos. Soc. 89: 972-1004. 
  114. ^ Fedonkin, M.A.; Simonetta, A.; Ivantsov, A.Y. (2007). “New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications”. Geol. Soc. Lond. Spec. Publ. 286: 157–179. 
  115. ^ Liu, A.G.; Matthews, J.J.; Menon, L.R.; McIlroy, D.; Brasier, M.D. (2014). “Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)”. Proc. Biol. Sci. 281, 20141202. doi:10.1098/rspb.2014.1202. 
  116. ^ 土屋 2013, pp. 33–35.
  117. ^ 土屋 2013, pp. 35–36.
  118. ^ Carbone, C.; Narbonne, G.M. (2014). “When life got smart: the evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada”. J. Paleontol. 88: 309-330. 
  119. ^ Mángano, M.G.; Buatois, L.A. (2014). “Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks”. Proc. Biol. Sci. 281, 20140038. 
  120. ^ Liu, A.G.; Mcllroy, D.; Brasier, M.D. (2010). “First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland”. Geology 38. 
  121. ^ Rogov, V.I.; Marusin, V.; Bykova, N.; Goy, Y.; Nagovitsin, K.E.; Kochnev, B.B.; Karlova, G.A.; Grazhdankin, D. (2012). “The oldest evidence of bioturbation on Earth”. Geology 40: 395-398. 
  122. ^ Pecoits, E.; Konhauser, K.O.; Aubet, N.R.; Heaman, L.M.; Veroslavsky, G.; Stern, R.A.; Gingras, M.K. (2012). “Bilaterian burrows and grazing behavior at >585 million years ago”. Science 336: 1693-1696. 
  123. ^ 土屋 2013, pp. 165–166.
  124. ^ 土屋 2013, pp. 166–167.
  125. ^ a b c d e f g h i j k l m n o 藤田 2010, pp. 92–98.
  126. ^ 土屋 2013, pp. 169–171.
  127. ^ a b New Timeline for Appearances of Skeletal Animals in Fossil Record Developed by UCSB Researchers”. The Regents of the University of California (2010年11月10日). 2021年8月28日閲覧。
  128. ^ 土屋 2013, pp. 164–165.
  129. ^ a b c d 土屋 2013, pp. 171–174.
  130. ^ Conway-Morris 2003, pp. 505–515.
  131. ^ 土屋 2013, pp. 179–181.
  132. ^ Valentine, JW; Jablonski, D; Erwin, DH (1999). “Fossils, molecules and embryos: new perspectives on the Cambrian explosion”. Development 126 (5): 851–9. PMID 9927587. http://dev.biologists.org/content/126/5/851.long. 
  133. ^ Budd, Graham (2013). “At the origin of animals: the revolutionary cambrian fossil record”. Current Genomics 14 (6): 344–354. doi:10.2174/13892029113149990011. PMC 3861885. PMID 24396267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861885/. 
  134. ^ Erwin, D. H.; Laflamme, M.; Tweedt, S. M.; Sperling, E. A.; Pisani, D.; Peterson, K. J. (2011). “The Cambrian conundrum: early divergence and later ecological success in the early history of animals”. Science 334 (6059): 1091–1097. Bibcode2011Sci...334.1091E. doi:10.1126/science.1206375. PMID 22116879. 
  135. ^ Kouchinsky, A.; Bengtson, S.; Runnegar, B. N.; Skovsted, C. B.; Steiner, M.; Vendrasco, M. J. (2012). “Chronology of early Cambrian biomineralization”. Geological Magazine 149 (2): 221–251. Bibcode2012GeoM..149..221K. doi:10.1017/s0016756811000720. 
  136. ^ Servais, T.; Harper, D.A.T. (2018). “The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration”. Lethaia 51: 151-164. 
  137. ^ García-Bellido, Diego C; Paterson, John R (2014). “A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group”. BMC Evolutionary Biology 14: 214. doi:10.1186/s12862-014-0214-z. PMC 4203957. PMID 25273382. http://www.biomedcentral.com/1471-2148/14/214/abstract#. 
  138. ^ a b Smith, Martin R.; Ortega-Hernández, Javier (2014-08-17). “Hallucigenia’s onychophoran-like claws and the case for Tactopoda” (英語). Nature 514 (7522): 363–366. doi:10.1038/nature13576. ISSN 0028-0836. https://doi.org/10.1038/nature13576. 
  139. ^ a b c d Hernández, Javier Ortega (英語). Lobopodians. http://www.academia.edu/16933971/Lobopodians. 
  140. ^ a b c d e 白山義久・久保田信・駒井智幸・西川輝昭・月井雄二・加藤哲哉・窪寺恒己・齋藤寛・長谷川和範・藤田敏彦・土田真二 (2005-03-20). 水の生物. 小学館の図鑑 NEO. ISBN 4092172079 
  141. ^ 藤田 2010, p. 127.
  142. ^ a b 藤田 2010, p.119
  143. ^ a b c d e 中野裕昭 (2018), “珍無腸形動物 ―左右相称動物の祖先に迫る?”, pp. 86-87  in 日本動物学会 2018
  144. ^ a b c d e Cannon, Johanna T.; Vellutini, Bruno C.; Smith III, Julian.; Ronquist, Frederik; Jondelius, Ulf; Hejnol, Andreas (3 February 2016). “Xenacoelomorpha is the sister group to Nephrozoa”. Nature 530 (7588): 89–93. Bibcode2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. http://www.nature.com/nature/journal/v530/n7588/full/nature16520.html 2016年2月3日閲覧。. 
  145. ^ a b c Rouse, Greg W.; Wilson, Nerida G.; Carvajal, Jose I.; Vrijenhoek, Robert C. (2016-02). “New deep-sea species of Xenoturbella and the position of Xenacoelomorpha” (英語). Nature 530 (7588): 94–97. doi:10.1038/nature16545. ISSN 0028-0836. http://www.nature.com/articles/nature16545. 
  146. ^ a b c Philippe, H.; Brinkmann, H.; Copley, R. R.; Moroz, L. L.; Nakano, H.; Poustka, A. J.; Wallberg, A.; Peterson, K. J. et al. (2011). “Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470 (7333): 255–258. doi:10.1038/nature09676. PMC 4025995. PMID 21307940. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025995/. 
  147. ^ a b c d e Philippe, H.; Poustka, Albert J.; Chiodin, Marta; J.Hoff, Katharina; Dessimoz, Christophe; Tomiczek, Bartlomiej; Schiffer, Philipp H.; Müller, Steven et al. (2019). “Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria”. Current Biology 29 (11): 1818-1826. doi:10.1016/j.cub.2019.04.009. 
  148. ^ 藤田 2010, p.124
  149. ^ a b c 藤田 2010, p. 113.
  150. ^ a b 藤田 2010, p. 122.
  151. ^ a b c d e f g h i 柁原宏 (2018), “腹毛動物・扁形動物・顎口動物・微顎動物・輪形動物・紐形動物 ―人目に触れないマイナー分類群”, pp. 62-63  in 日本動物学会 2018
  152. ^ 田中正敦 (2018), “環形動物(有鬚動物・ユムシ・星口動物を含む) ―誤解されていた系統関係”, pp. 70-71  in 日本動物学会 2018
  153. ^ 藤田 2010, p.106
  154. ^ Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W. et al. (2008-03-05). “Broad phylogenomic sampling improves resolution of the animal tree of life” (英語). Nature 452 (7188): 745–749. doi:10.1038/nature06614. ISSN 0028-0836. http://www.nature.com/doifinder/10.1038/nature06614. 
  155. ^ Egger, Bernhard; Steinke, Dirk; Tarui, Hiroshi; Mulder, Katrien De; Arendt, Detlev; Borgonie, Gaëtan; Funayama, Noriko; Gschwentner, Robert et al. (2009-05-11). “To Be or Not to Be a Flatworm: The Acoel Controversy” (英語). PLOS ONE 4 (5): e5502. doi:10.1371/journal.pone.0005502. ISSN 1932-6203. PMC PMC2676513. PMID 19430533. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005502. 
  156. ^ a b c d e f g h i Giribet 2016, pp.14-21
  157. ^ a b c d e f g h i j k l m Laumer et al. 2019, pp.1-10
  158. ^ a b c d Lu, Tsai-Ming; Kanda, Miyuki; Satoh, Noriyuki; Furuya, Hidetaka (2017). “The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution”. Zoological Letters 3 (6): 1-9. doi:10.1186/s40851-017-0068-5. 
  159. ^ a b Schiffer, Philipp H.; Robertson, Helen E.; Telford, Maximilian J. (2018). “Orthonectids Are Highly Degenerate Annelid Worms”. Current Biology 28 (12): 1970-1974. doi:10.1016/j.cub.2018.04.088. 
  160. ^ a b c 藤田 2010, p. 114.
  161. ^ Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert (15 December 2015). “Genomic data do not support comb jellies as the sister group to all other animals”. Proceedings of the National Academy of Sciences 112 (50): 15402–15407. doi:10.1073/pnas.1518127112. PMC 4687580. PMID 26621703. http://www.pnas.org/content/112/50/15402. 
  162. ^ Simion, Paul; Philippe, Hervé; Baurain, Denis; Jager, Muriel; Richter, Daniel J.; Franco, Arnaud Di; Roure, Béatrice; Satoh, Nori et al. (3 April 2017). “A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals”. Current Biology 27 (7): 958–967. doi:10.1016/j.cub.2017.02.031. PMID 28318975. https://doi.org/10.1016/j.cub.2017.02.031. 
  163. ^ Feuda, Roberto; Dohrmann, Martin; Pett, Walker; Philippe, Hervé; Rota-Stabelli, Omar; Lartillot, Nicolas; Wörheide, Gert; Pisani, Davide (2017). “Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals”. Current Biology 27 (24): 3864. doi:10.1016/j.cub.2017.11.008. PMID 29199080. http://linkinghub.elsevier.com/retrieve/pii/S0960982217314537. 
  164. ^ a b Laumer, Christopher E.; Gruber-Vodicka, Harald; Hadfield, Michael G.; Pearse, Vicki B.; Riesgo, Ana; Marioni, John C.; Giribet, Gonzalo (2018). “Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias”. eLIFE 7:e36278: 1-19. doi:10.7554/eLife.36278. 
  165. ^ a b Dunn, Casey W.; Hejnol, Andreas; Matus, David Q.; Pang, Kevin; Browne, William E.; Smith, Stephen A.; Seaver, Elaine; Rouse, Greg W. et al. (2008). “Broad phylogenomic sampling improves resolution of the animal tree of life”. Nature 452 (7188): 745–749. Bibcode2008Natur.452..745D. doi:10.1038/nature06614. PMID 18322464. http://www.nature.com/doifinder/10.1038/nature06614. 
  166. ^ a b c d Henjol, Andreas; Matthias, Obst; Stamatakis, Alexandros; Ott, Michael; Rouse, Greg W.; Edgecombe, Gregory D.; Martinez, Pedro; Jaume, Baguñà et al. (2009). “Assessing the root of bilaterian animals with scalable phylogenomic methods”. Proc. R. Soc. B 276: 4261-4270. doi:10.1098/rspb.2009.0896. 
  167. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Leonid L.; Halanych, Kenneth M. (2015). “Error, signal, and the placement of Ctenophora sister to all other animals”. PNAS 112 (18): 5773-5778. doi:10.1073/pnas.1503453112. 
  168. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Tatiana P.; Mukherjee, Krishanu; Williams, Peter; Paulay, Gustav; Moroz, Leonid L.; Halanych, Kenneth M. (2017). “Ctenophore relationships and their placement as the sister group to all other animals”. Nature Ecology & Evolution 1 (11): 1737. doi:10.1038/s41559-017-0331-3. http://www.nature.com/articles/s41559-017-0331-3. 
  169. ^ Wainright, Patricia O.; Hinkle, Gregory; Sogin, Mitchell L.; Stickel, Shawn K. (1993). “Monophyletic Origins of the Metazoa: An Evolutionary Link with Fungi”. Science New Series 260 (5106): 340-342. 
  170. ^ Jessop, Nancy Meyer (1970). Biosphere; a study of life. Prentice-Hall. p. 428 
  171. ^ Sumich, James L. (2008). Laboratory and Field Investigations in Marine Life. Jones & Bartlett Learning. p. 67. ISBN 978-0-7637-5730-4 
  172. ^ a b c 藤田 2010, pp. 117–120.
  173. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 16. Encyclopædia Britannica. p. 523. ISBN 978-0-85229-961-6 
  174. ^ 藤田 2010, p.122
  175. ^ a b c d e 中野裕昭 (2018), “刺胞動物・有櫛動物・平板動物・海綿動物 ―左右相称でない動物たち”, pp. 58-59  in 日本動物学会 2018
  176. ^ 藤田 2010, pp. 120–121.
  177. ^ a b c 久保田信 (2000), 有櫛動物と刺胞動物の関係, pp. 116-117  in 岩槻・馬渡 2000
  178. ^ a b c 藤田 2010, pp. 122–132.
  179. ^ a b Minelli, Alessandro (2009). Perspectives in Animal Phylogeny and Evolution. Oxford University Press. p. 53. ISBN 978-0-19-856620-5. https://books.google.com/books?id=jIASDAAAQBAJ&pg=PA53 
  180. ^ a b c Brusca, Richard C. (2016). Introduction to the Bilateria and the Phylum Xenacoelomorpha | Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation. Sinauer Associates. pp. 345–372. ISBN 978-1605353753. http://www.sinauer.com/media/wysiwyg/samples/Brusca3e_Chapter_9.pdf 
  181. ^ Quillin, K. J. (May 1998). “Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris”. The Journal of Experimental Biology 201 (12): 1871–83. PMID 9600869. http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=9600869. 
  182. ^ Westblad, E. (1949). “Xenoturbella bocki n. g., n. sp., a peculiar, primitive Turbellarian type”. Arkiv för Zoologi 1: 3–29. 
  183. ^ Bourlat, S. et al. (2006). “Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida”. Nature 444: 85-88. 
  184. ^ Perseke, M.; Hankeln, T.; Weich, B.; Fritzsch, G.; Stadler, P.F.; Israelsson, O.; Bernhard, D.; Schlegel, M. (August 2007). “The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis”. Theory Biosci 126 (1): 35–42. doi:10.1007/s12064-007-0007-7. PMID 18087755. http://www.bioinf.uni-leipzig.de/Publications/PREPRINTS/07-009.pdf. 
  185. ^ Baguñà, J; Riutort, M (2004). “Molecular phylogeny of the Platyhelminthes”. Can J Zool 82: 168-193. 
  186. ^ Nakano, H.; Lundin, K.; Bourlat, S.J.; Telford, M.J. (2013). “Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha”. Nature Communications 4 (1): 1537. doi:10.1038/ncomms2556. 
  187. ^ 馬渡 2013, pp.27-29
  188. ^ 筑波大学 (2019年5月27日), “珍渦虫はもともと単純か複雑か ―まだ続く珍無腸動物門の系統樹上の放浪―” (プレスリリース), https://www.tsukuba.ac.jp/journal/images/pdf/190527nakano-2.pdf 2021年8月20日閲覧。 
  189. ^ 後藤太一郎 (2000), “31. 毛顎動物門 Phylum CHAETOGNATHA”, pp. 235-237  in 岩槻・馬渡 2000
  190. ^ a b c d e f g 後藤太一郎 (2018), “毛顎動物 ―謎に包まれた系統的位置”, pp. 84-85  in 日本動物学会 2018
  191. ^ Telford, Maximilian J.; Holland, P. W. H. (1993). “The Phylogenetic Affinities of the Chaetognaths: A Molecular Analysis”. Mol. Biol. Evol. 10 (3): 660-676. 
  192. ^ Wada, Hiroshi; Satoh, Noriyuki. Proc. Natl. Acad. Sci. 91 (5): 1801-1804. doi:10.1073/pnas.91.5.1801. 
  193. ^ a b c d Mallatt, Jon (2010). “Nearly complete rRNA genes assembled from across the metazoan animals: Effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction”. Molecular Phylogenetics and Evolution 55: 1-17. doi:10.1016/j.ympev.2009.09.028. 
  194. ^ a b 藤田 2010, pp. 122–123.
  195. ^ 藤田 2010, p. 108.
  196. ^ Dawkins, Richard (2005). The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. Houghton Mifflin Harcourt. p. 381. ISBN 978-0-618-61916-0 
  197. ^ a b 藤田 2010, p.150
  198. ^ a b c d e 嶋田大輔 (2018), “線形動物・類線形動物 ―昆虫に匹敵する多様性の持ち主?”, pp. 72-73  in 日本動物学会 2018
  199. ^ 藤田 2010, pp.150-152
  200. ^ a b 藤田 2010, p.153
  201. ^ a b 山崎博史 (2018), “鰓曳動物・胴甲動物・動吻動吻 ―棘に覆われた頭部をもつ動物たち”, pp. 74-75  in 日本動物学会 2018
  202. ^ Miller, Stephen A.; Harley, John P. (2006). Zoology. McGraw-Hill Higher Education. p. 173. https://books.google.com/books?id=BWZFAQAAIAAJ 
  203. ^ a b 藤田 2010, pp.155-156
  204. ^ a b c 大塚攻・田中隼人 (2020). “顎脚類(甲殻類)の分類と系統に関する研究の最近の動向”. タクサ 48: 49-62. 
  205. ^ 島野智之 (2018), “節足動物(多足類・鋏角類) ―いまだ系統が解明されていない2つの大きな分類群”, pp. 78-79  in 日本動物学会 2018
  206. ^ a b 藤田 2010, p.168
  207. ^ a b Giribet, Gonzalo; Edgecombe, Gregory D. (2019-06-17). “The Phylogeny and Evolutionary History of Arthropods”. Current Biology 29 (12): R592–R602. doi:10.1016/j.cub.2019.04.057. ISSN 0960-9822. http://www.sciencedirect.com/science/article/pii/S0960982219304865. 
  208. ^ Olesen, Jørgen; Pisani, Davide; Iliffe, Thomas M.; Legg, David A.; Palero, Ferran; Glenner, Henrik; Thomsen, Philip Francis; Vinther, Jakob et al. (2019-08-01). “Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling” (英語). Genome Biology and Evolution 11 (8): 2055–2070. doi:10.1093/gbe/evz097. https://academic.oup.com/gbe/article/11/8/2055/5528088. 
  209. ^ a b 藤田 2010, p.157
  210. ^ 藤田 2010, pp.157-158
  211. ^ a b Siveter, Derek J.; Briggs, Derek E. G.; Siveter, David J.; Sutton, Mark D.; Legg, David (2018-08-01). “A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK” (英語). Open Science 5 (8): 172101. doi:10.1098/rsos.172101. ISSN 2054-5703. http://rsos.royalsocietypublishing.org/content/5/8/172101. 
  212. ^ Ramsköld, L.; Xianguang, Hou (1991-05). “New early Cambrian animal and onychophoran affinities of enigmatic metazoans” (英語). Nature 351 (6323): 225–228. doi:10.1038/351225a0. ISSN 0028-0836. https://www.nature.com/articles/351225a0. 
  213. ^ Budd, Graham (1993-08). “A Cambrian gilled lobopod from Greenland” (英語). Nature 364 (6439): 709–711. doi:10.1038/364709a0. ISSN 0028-0836. https://doi.org/10.1038/364709a0. 
  214. ^ BUDD, GRAHAM E. (1996-03). “The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group” (英語). Lethaia 29 (1): 1–14. doi:10.1111/j.1502-3931.1996.tb01831.x. ISSN 0024-1164. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1502-3931.1996.tb01831.x. 
  215. ^ (PDF) Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China (Acta Zoologica (2007) DOI: 10.1111/j.1463-6395.2007.00281.x)” (英語). ResearchGate. 2018年10月28日閲覧。
  216. ^ Dzik, Jerzy (2011). "The xenusian-to-anomalocaridid transition within the lobopodians". Bollettino della Società Paleontologica Italiana, 50(1): 65-74.
  217. ^ Budd, Graham E. (2001-01). “Tardigrades as ‘Stem-Group Arthropods’: The Evidence from the Cambrian Fauna”. Zoologischer Anzeiger - A Journal of Comparative Zoology 240 (3-4): 265–279. doi:10.1078/0044-5231-00034. ISSN 0044-5231. https://doi.org/10.1078/0044-5231-00034. 
  218. ^ a b c 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-5-4 分子系統学)”, pp. 34-45  in 岩槻・馬渡 2000
  219. ^ a b Struck, Torsten H.; Wey-Fabrizius, Alexandra R.; Golombek, Anja; Hering, Lars; Weigert, Anne; Bleidorn, Christoph; Klebow, Sabrina; Iakovenko, Nataliia et al. (2014). “Platyzoan Paraphyly Based on Phylogenomic Data Supports a Noncoelomate Ancestry of Spiralia”. Molecular Biology and Evolution 31 (7): 1833-1849. doi:10.1093/molbev/msu143. PMID 24748651. 
  220. ^ Shankland, M.; Seaver, E. C. (2000). “Evolution of the bilaterian body plan: What have we learned from annelids?”. Proceedings of the National Academy of Sciences 97 (9): 4434–7. Bibcode2000PNAS...97.4434S. doi:10.1073/pnas.97.9.4434. JSTOR 122407. PMC 34316. PMID 10781038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34316/. 
  221. ^ a b c d 藤田 2010, pp. 130–131.
  222. ^ a b 藤田 2010, pp. 127–128.
  223. ^ Balsamo, Maria; Artois, Tom; Smith III, Julian P. S.; Todaro, M. Antonio; Guidi, Loretta (2020). “The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes)”. Hydrobiologia 847: 2613-2644. 
  224. ^ a b 藤田 2010, pp. 135–136.
  225. ^ a b 藤田 2010, p.132
  226. ^ a b c d e 藤田 2010, pp. 136–137.
  227. ^ a b c 佐々木猛智 (2018), “軟体動物 ―900 kgのイカ,0.01 g の巻貝”, pp. 68-69  in 日本動物学会 2018
  228. ^ a b c d Weigert, Anne; Bleidorn, Christoph (2016). “Current status of annelid phylogeny”. Org Divers Evol 16: 345-362. doi:10.1007/s13127-016-0265-7. 
  229. ^ 巌佐ほか 2013, pp. 1584–1586.
  230. ^ a b 藤田 2010, pp. 104–105.
  231. ^ a b 佐藤ほか 2004, pp.63-64
  232. ^ 岩槻・馬渡 2000, p.23
  233. ^ 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-2 動物界の門レベルの多様性)”, pp. 21-23  in 岩槻・馬渡 2000
  234. ^ a b 藤田 2010, p. 169.
  235. ^ a b 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統(1-3-1 漸進的進化思想と分子系統樹)”, pp. 3-14  in 岩槻・馬渡 2000
  236. ^ 藤田 2010 p.108
  237. ^ Edgecombe, Gregory D.; Giribet, Gonzalo; Dunn, Casey W.; Hejnol, Andreas; Kristensen, Reinhardt M.; Neves, Ricardo C.; Rouse, Greg W.; Worsaae, Katrine et al. (June 2011). “Higher-level metazoan relationships: recent progress and remaining questions”. Organisms, Diversity & Evolution 11 (2): 151–172. doi:10.1007/s13127-011-0044-4. 
  238. ^ Fröbius, Andreas C.; Funch, Peter (2017-04-04). “Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans”. Nature Communications 8 (1). Bibcode2017NatCo...8....9F. doi:10.1038/s41467-017-00020-w. http://www.nature.com/articles/s41467-017-00020-w. 
  239. ^ Smith, Martin R.; Ortega-Hernández, Javier (2014). “Hallucigenia’s onychophoran-like claws and the case for Tactopoda”. Nature 514 (7522): 363–366. Bibcode2014Natur.514..363S. doi:10.1038/nature13576. https://doi.org/10.1038/nature13576. 
  240. ^ a b Palaeos Metazoa: Ecdysozoa”. palaeos.com. 2017年9月2日閲覧。
  241. ^ Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi (June 2015). “Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences”. Zoological Letters 1: 18. doi:10.1186/s40851-015-0017-0. https://doi.org/10.1186/s40851-015-0017-0. 
  242. ^ Nielsen, C. (2002). Animal Evolution: Interrelationships of the Living Phyla (2nd ed.). Oxford University Press. ISBN 0-19-850682-1 
  243. ^ Bilateria”. Tree of Life Web Project (2001年). 2014年8月11日閲覧。
  244. ^ a b c d 藤田 2010, pp. 169–173.
  245. ^ a b c 藤田敏彦 (2018), “棘皮動物 ―星形の体をもつ海のスター”, pp. 88-89  in 日本動物学会 2018
  246. ^ a b c d e 藤田 2010, p. -173.
  247. ^ a b c d e f g h i 西川輝昭 (2018), “頭索動物・尾索動物・半索動物 ―脊椎動物のルーツを探る”, pp. 90-91  in 日本動物学会 2018
  248. ^ a b 佐藤ほか 2004, pp.117
  249. ^ a b c d e f g 藤田 2010, pp. 174–180.
  250. ^ (プレスリリース), 沖縄科学技術大学院大学東邦大学, (2014年9月17日), https://www.oist.jp/ja/news-center/press-releases/16643+2021年8月8日閲覧。 
  251. ^ Satoh, Noriyuki; Rokhsar, Daniel; Nishikawa, Teruaki (2014). “Chordate evolution and the three-phylum system”. Proceedings of Royal Society B 281 (1794): 1-10. doi:10.1098/rspb.2014.1729. 
  252. ^ a b 甲斐嘉晃 (2018), “脊椎動物(魚類) ―水中で多様に進化した分類群”, pp. 92-95  in 日本動物学会 2018
  253. ^ 栗田和紀 (2018), “脊椎動物(爬虫類) ―陸に卵を産み始めた脊椎動物”, pp. 98-99  in 日本動物学会 2018
  254. ^ a b 佐藤ほか 2004, p.196
  255. ^ a b c 鈴木大地「アリストテレス『動物発生論』の現代生物学・科学哲学的検討Ⅰ : 第1巻第1章~第16章」『古典古代学』第6号、筑波大学大学院人文社会科学研究科古典古代学研究室、2013年、 1-23頁、 ISSN 1883-7352NAID 1200053732712021年10月1日閲覧。
  256. ^ a b c d 松浦 2009, pp.17-18
  257. ^ 松浦 2009, pp.20-21
  258. ^ 藤田 2010, pp.119-120
  259. ^ a b 上島励 (2000), ミクソゾアの系統学的位置, p. 93  in 岩槻・馬渡 2000
  260. ^ a b 古屋秀隆 (2004). “中生動物研究の現状”. タクサ (日本動物分類学会) (16): 1-9. 
  261. ^ Kozloff 1990, pp.212-216
  262. ^ 藤田 2010, p.125
  263. ^ 久米又三・織田秀実 (1957), 外肛動物, pp. 171-198  in 久米・團 1957
  264. ^ 馬渡静夫「触手動物の系統」『哺乳類科学』第10巻第2号、日本哺乳類学会、1970年、 61-68頁、 doi:10.11238/mammalianscience.10.2_61ISSN 0385-437XNAID 1300008842202021年10月1日閲覧。
  265. ^ a b c d e f g h i 白山義久 (2000), “総合的観点から見た無脊椎動物の多様性と系統”, pp. 27-30  in 岩槻・馬渡 2000
  266. ^ 巌佐ほか 2013, p. 1585.
  267. ^ a b c d 藤田 2010, p. 145.
  268. ^ 藤田 2010, p. 163.
  269. ^ a b R.S.K.バーンズ 他『図説無脊椎動物学』本川達雄 監訳訳、2009年6月25日。ISBN 978-4-254-17132-7
  270. ^ 藤田 2010, p. 150.
  271. ^ 藤田 2010, p. 130.
  272. ^ a b c 資料4 「動物の愛護管理の歴史的変遷」”. 環境省. 2019年12月26日閲覧。
  273. ^ a b c 愛玩動物の衛生管理の徹底に関するガイドライン2006”. 厚生労働省. 2019年12月26日閲覧。
  274. ^ a b 巌佐ほか 2013, p. 424f.
  275. ^ 水野 1977, p. 266.
  276. ^ a b c 巌佐ほか 2013, p. 995h.
  277. ^ a b c 巌佐ほか 2013, p. 995a.






動物と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「動物」の関連用語

動物のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



動物のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの動物 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2021 GRAS Group, Inc.RSS