彗星 彗星観測の歴史

彗星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/04 23:47 UTC 版)

彗星観測の歴史

古代・中世の記録と信仰

馬王堆漢墓より発掘された『天文気象雑占』より彗星図。占文は、これらの彗星が現れると兵乱や疫病の流行が起こると記している。
バイユーのタペストリーに描かれたハレー彗星(右上)。上にはラテン語で「彼らは星を(驚き)見ている」と書かれており、ハロルド2世の従臣たちが彗星を指差して恐れる姿が描かれている。
1506年アウクスブルクで観測された彗星を描いた絵画

望遠鏡が発明される以前、彗星は夜空の何もないところから突然現れ、ゆっくりと消えていくように観測された。そのため、流星群日食と同様に、君主の死や国の滅亡、災害、疫病といった出来事を予告する凶兆と信じられ、果ては地球の住人に対する天からの攻撃であると解釈されることすらあり、人々はその出現を恐れた。

世界各地で古代より彗星についての記録が残っている。紀元前2320年バビロニアや、『ギルガメシュ叙事詩』、『ヨハネの黙示録』、『エノク書』といった書物で「落ちる星」として言及されているが、これらは彗星もしくは火球について言及したものだと解釈されている。中国では特に多くの記録が残っており、紀元前よりハレー彗星の回帰が4度記録されている。紀元前1059年ごろ、代末期の甲骨文に彗星と思われる記述が残されているが、確実な最古と言える記録は紀元前613年の『春秋』に記されたものとされている。ほか紀元前240年始皇帝がハレー彗星を見たとする記録が『史記』に残されている[52]ヨーロッパでは彗星は気象現象の一種だと考えられていたため、古い記録は中国ほど多くはないが、有名な例として1066年イングランド王国ハロルド2世が即位して間もない頃に「火の星」が現れ、従臣たちを怯えさせたことが『アングロサクソン年代記』やバイユーのタペストリーに記録されており[53]、その直後に戦役が発生、王は戦死し国は征服された。日本では、684年のハレー彗星の回帰に関する記述が『日本書紀』にみられる[52]13世紀に災厄が多発した際には、末法の時代に現れるという「星宿変怪難」として恐れられた[54]

観察と考察

アリストテレスは、彼が著した最初の気象学の本『気象論』(Meteorologica[1]で彗星に対する見解を示し、それが西洋の思想を2000年近くにわたって支配することになった。彼は、彗星は惑星であるか少なくとも惑星に関係する現象であるという、それまでの学者の説を否定し天文現象ではなく気象現象と考えた[55]。その根拠は、惑星の動く範囲は黄道帯の中に限られるが、彗星は空のあらゆるところに現れるというものであった[56]。その代わり、彼は彗星を大気の上層部で起こる現象だととらえ、そこは温度が高く、乾いた蒸気が集まり時々勢いよく炎が燃え上がるのだと考えた。彼はこの仕組みは彗星だけでなく、流星や、オーロラ、そして天の川の成因にさえなっていると考えた[57]

その後、この彗星に対する見方に反論する古代の学者が少数だがいた。ルキウス・アンナエウス・セネカは、彼の著書『自然研究』(Quaestiones naturales)において、彗星は空を規則的に動き、に邪魔されることがなく、大気中の現象よりは天体に典型的な運動をすることを述べていた。彼はほかの惑星が黄道帯の外に現れることがないことを認めつつも、天球上のものに関する人間の知識は限られているため、惑星のような物体が空のあらゆるところに現れる可能性を否定する理由はないとした。しかし、アリストテレスの立場のほうが影響力が大きく、彗星が地球の大気圏外にあるということが証明されたのは16世紀のことであった。

1577年に明るい彗星が現れ、数か月間肉眼で観察できた。デンマークの天文学者ティコ・ブラーエは、彗星に測定可能な視差がないことを確かめるため、彗星の位置を自分で測定するとともに、遠く離れた場所の観測者にも測定させた。正確な測定をしたところ、その測定結果は、彗星が少なくとも月より4倍以上遠くにあるということを示していた[58]

18世紀にもなると、多くの天文学者たちが彗星の発見と研究を競ったが、中には彗星と紛らわしい天体があることも知られるようになった。1764年にロンドン王立協会の外国人会員になったフランスのシャルル・メシエは、自らも彗星の捜索を行うかたわら、彗星と紛らわしい天体が多いことに閉口していた。そこでメシエは彗星ではない天体のリストを作り始めた。これが天体カタログの『メシエカタログ』である。メシエ自身も1760年に最初の彗星を発見している(C/1760 B)[59]

軌道の研究

アイザック・ニュートンプリンキピアに示された、放物線に合わせた1680年の大彗星の軌道

彗星が宇宙空間にあるということは証明されたが、彗星がどうやって空を移動しているのかという疑問は、その後、数世紀にわたって議論の中心になるように思われた。ヨハネス・ケプラー1609年に、惑星の軌道は楕円軌道であると決着をつけたあとでさえ、彼は惑星の運動を支配している法則(ケプラーの法則)がほかの天体にも影響を与えていると信じるのを躊躇した。彼は彗星は惑星の間を直線軌道で運行していると信じていた[60]ガリレオ・ガリレイは、地動説を唱えたニコラウス・コペルニクスの擁護者であったにもかかわらず、ティコによる彗星の視差の測定結果を受け入れず、彗星は地球大気の上層を直線状に動くというアリストテレスの考えを支持し続けた。ただし、ケプラーの師ミヒャエル・メストリンは彗星の軌道が直線からわずかにずれることを観測で確認しており、ケプラーも自身の説を発表するにあたって師のデータを改竄せず、その理由について「地球の運動のため」との(誤った)考察を与えている[60]

ケプラーの惑星の運動の法則が彗星にも適用されるべきだと初めて提案したのはウィリアム・ローワーで、1610年のことであった[58]。その後、数十年間、ピエール・プティジョヴァンニ・ボレリアドリアン・オーズーロバート・フック、そしてジョヴァンニ・カッシーニなどを含むほかの天文学者たちは、彗星は太陽の周りを曲線状の軌道、楕円軌道か放物線軌道を描いて運行しているという説を唱えたが、その一方、クリスティアーン・ホイヘンスヨハネス・ヘヴェリウスは、彗星は直線運動をしているという説を支持した。

この問題は、1680年11月14日ゴットフリート・キルヒが発見したキルヒ彗星によって解決された。ヨーロッパのいたるところで、天文学者たちはこの彗星の位置を観測し続けた。1687年アイザック・ニュートンは彼の著書『自然哲学の数学的諸原理』(プリンキピア)において、万有引力逆2乗の法則の影響下で運動する物体は、軌道の形が円錐曲線の一種になるということを証明し、天空における彗星の運動が放物線軌道とどのように適合するかを、1680年の彗星を例にして具体的に説明した[61]

1705年エドモンド・ハレーは、1337年から1698年までの24個の彗星の出現に対して、ニュートンの手法を応用した。するとハレーは、1531年、1607年、1682年に現れた3つの彗星の軌道要素が、きわめて似通っていることに気づいた。しかも、軌道要素のわずかな違いは、木星と土星による重力的な摂動によって説明することができた。彼はこの3つの彗星の出現は、同じ彗星が3回出現したものだと確信し、この彗星は1758年か1759年に再び戻ってくるだろうと予言した[62](ハレー以前に、ロバート・フックがすでに1664年に出現した彗星と1618年の彗星を同定し[63]、また同じころカッシーニも1577年、1665年、1680年の彗星は同じものではないかと推測していたが[64]、これらはどちらも間違っていた)。ハレーが予言した彗星の戻ってくる期日は、のちに3人のフランス数学者によって改良された。アレクシス・クレロージェローム・ラランドニコル=レーヌ・ルポートである。彼らは彗星の1759年の近日点通過日時を1か月以内の誤差で予言した[65]。彗星は予言通りに回帰し、その彗星はハレー彗星として知られることとなった(公式な符号は1P/Halley[47]

短い周期を持ち、歴史上の記録に何度も登場するような彗星の中で、ハレー彗星はどの出現でも肉眼で見えるほどの明るさになったという点で特異である。ハレー彗星の出現の周期性が確立して以降、数多くの周期彗星が望遠鏡を使って発見されてきた。2番目に発見された周期彗星はエンケ彗星(公式な符号は2P/Encke)である[48]1819年から1821年までの期間中、ドイツの数学者・物理学者ヨハン・フランツ・エンケは、1786年、1795年、1805年、1818年に観測された一連の彗星の出現から軌道を計算し、これらは同一の彗星であるという結論を下し、1822年の出現を予言するのに成功した[48]。1900年までに、17個の彗星について1回以上の近日点通過が観測され、周期彗星として確認された。2010年までに、240個以上の彗星について周期彗星としての識別に成功しているが、そのうちのいくつかは消滅したり見失われたりしている。

物理的特徴の研究

アイザック・ニュートンは、彗星を固く締まった頑丈な固体だとした。つまり非常に長い楕円軌道を描き、その軌道と方向がかなり自由な惑星の1種であって、その尾は、太陽熱で着火または加熱された頭部、つまり彗星の核から放出された非常に希薄な蒸気だと考えていたのである。また、ニュートンにとっては彗星は、惑星の水分と湿気を維持するために不可欠なものだと思われた。つまり、彗星の蒸気と放出ガスが凝縮したものから、植物が生まれ腐敗し乾燥した土になるために使われるすべての水分が再供給、補充されるとした。ニュートンは、すべての植物は液体から増え、それが腐敗して土になると考えていたためである。だとすると乾いた土の量は絶えず増加するため、その惑星の水分は絶えず供給されていない限り絶えず減っていき、ついにはなくなるはずだと考えたのである。ニュートンは、われわれの空気のもっとも精妙で最上の部分を構成する、生命とすべての存在に絶対不可欠な精気が、彗星によってもたらされるのではないかと考えた。また、彼の推測によると、彗星は太陽に新しい燃料を補充しており、その発光体からすべての方向に絶えず送られる流れによって太陽の光を回復させているとした。

「巨いなる沸き立つ尾より振るえては
あまたの珠玉に潤いを甦らせる
その長き楕円の風の吹くところ
傾く太陽に新たな燃料を与える
星界を照らすがため天空の火を養う」[66]

18世紀以前に、彗星の物理的構造について正しい仮説を立てていた科学者もいた。1755年イマヌエル・カントは、彗星は揮発性の物質で構成されており、それが蒸発することが原因で近日点付近で彗星が明るくなるのだという仮説を立てた[67]。1836年には、ドイツの数学者フリードリッヒ・ベッセルが、1835年のハレー彗星の回帰で蒸気の流れを観察したことから、彗星から蒸発した物質の反動は、彗星の軌道に大きな影響を与えるのに十分なほど大きい可能性があると指摘し、エンケ彗星の非重力的な運動はこの仕組みによるという説を唱えた[68]

しかし、彗星に関連したほかの発見により、1世紀近くこれらの説はほとんど忘れ去られていた。1864年から1866年の期間中、イタリアの天文学者ジョヴァンニ・スキアパレッリペルセウス座流星群の軌道を計算し、軌道の類似性から、スイフト・タットル彗星の塵がペルセウス座流星群の原因であるという仮説を立てた。彗星と流星群との関連は、1872年に劇的な形で示されることとなった。ビエラ彗星を原因とする、激しい流星群の活動が観察されたのである。ビエラ彗星は、1846年の回帰で2つに分裂したのが観察され、次の1852年の回帰以降はまったく観測されなくなっていた彗星である[69]。これを基にして、彗星は表面を覆う氷の層と、緩く堆積した小さな岩石のような物体から構成されているとする、彗星の構成の「砂利の堆積」モデルが現れた。

20世紀半ばまで、このモデルは数々の欠点に悩まされてきた。特に、わずかな氷しか含んでいない物体が、何回かの近日点通過を経たあとも蒸気が蒸発することで明るく見え続けるということがなぜ可能なのかを説明できなかった。1950年フレッド・ホイップルが、「彗星は氷と塵からなる」という「汚れた雪玉」を提唱した[6][70]。岩石主体の天体にわずかに氷が混じっているのではなく、氷が主体の天体に塵や岩石が混じっているというのである。この「汚れた雪球」モデルはすぐに受け入れられた。

彗星探査機による観測

アメリカ航空宇宙局(NASA)の打ち上げたISEE-3は、当初のミッションを終えたあとにICEと改名されて地球の重力圏を離れ、1985年ジャコビニ・ツィナー彗星に接近し、彗星への近接探査を行った最初の宇宙探査機となった。翌1986年には、日本の宇宙科学研究所(ISAS)、欧州宇宙機関(ESA)、ソ連・東欧宇宙連合(IKI)が打ち上げた計5機の探査機にICEを加えた6機、通称ハレー艦隊が連携してハレー彗星の核を観測した。ESAのジオットが核を撮影したところ、蒸発する物質の流れが観測され、ハレー彗星は氷と塵の集まりであることが確かめられ、ホイップルの説が実証された。ジオットは1992年にもグリッグ・シェレルップ彗星に接近、観測を行った。

1998年に打ち上げられたNASAの工学実験探査機ディープ・スペース1号は、2001年7月21日ボレリー彗星の核に接近して詳細な写真を撮影し、ハレー彗星の特徴はほかの彗星にも同様に当てはまることを立証した。

探査機スターダストが撮影したヴィルト第2彗星。明るい面と暗い面からジェットが噴出しており、地形は荒涼としていて、乾燥していた。

その後の宇宙飛行ミッションは、彗星を構成している物質についての詳細を明らかにすることを目標に進められている。1999年2月7日に打ち上げられた探査機スターダストは、2004年1月2日にはヴィルト第2彗星に接近して核を撮影するとともにコマの粒子を採取し、2006年1月15日に標本を入れたカプセルを地球に投下した。標本の分析により、彗星を構成する主要元素の構成比から、彗星は太陽や惑星などの原材料物質であることを示すとともに、高温下で形成されるカンラン石などが発見された。高温下で形成される物質は従来の説で彗星が生まれたとされる領域で形成されたとは考えにくく、太陽に近い場所で形成された物質が彗星が形成された太陽系外縁部まで運ばれてきた可能性や、従来の説よりも彗星が形成された場所が太陽に近い場所であった可能性など、彗星の形成理論の再構築が必要となる可能性がある[71]

2005年1月12日に打ち上げられた探査機ディープ・インパクトは、同年7月4日に、核内部の構造の研究のためにテンペル第1彗星にインパクターを衝突させた。この結果、短周期彗星であるテンペル第1彗星の成分は長周期彗星のものとほぼ同じであることが判明した。さらに、塵の量が氷よりも多かったことから、彗星の核は「汚れた雪玉」というよりも「凍った泥団子」であると見られている。またテンペル第1彗星の内部物質からも、かつて高温下の条件を経験したと考えられる物質が検出されたため、ヴィルト第2彗星からの物質とともに彗星の形成理論や太陽系初期の状況を考える上で貴重な情報となった[71]

これまでに行われた近接探査

実現しなかった近接探査


  1. ^ Deiters, Stefan; Pailer, Dr. Norbert; Deverler, Susanne (2008). Astronomie: Eine Einführung in das Universum der Sterne. Komet. pp. 140-149. ISBN 978-3-898365-98-7 
  2. ^ Pilz, Uwe; Leitner, Burkhard (2013). Astro-Praxis: Kometen, Eine Einführung für Hobby-Astronomen. Oculum. pp. 40-45. ISBN 978-3-938469-60-6 
  3. ^ Hirschler, Johannes (2009年6月1日). “Kometen in der Geschichte”. Planet Wissen、Westdeutscher Rundfunk Köln、Südwestrundfunk、Bayerischer Rundfunk. 2013年10月28日閲覧。
  4. ^ 対外報告(第一報告:国際天文学連合における惑星の定義及び関連事項の取り扱いについて) (PDF)”. 日本学術会議物理学委員会IAU分科会及び天文学・宇宙物理学分科会 (2007年4月9日). 2010年1月31日閲覧。
  5. ^ a b 山本.中村(1984).
  6. ^ a b 彗星その本性と起源.
  7. ^ a b Yeomans, Donald K. (2005年). “Comet” (英語). World Book Online Reference Center. World Book. 2008年1月18日時点のオリジナル[リンク切れ]よりアーカイブ。2008年12月27日閲覧。
  8. ^ Meech, M. (1997年2月14日). “1997 Apparition of Comet Hale-Bopp: What We Can Learn from Bright Comets”. Planetary Science Research Discoveries. 2009年4月25日閲覧。
  9. ^ a b Stenger, R. (2001年4月6日). “Test boosts notion that comets brought life” (英語). CNN. 2009年1月27日時点のオリジナル[リンク切れ]よりアーカイブ。2009年4月25日閲覧。
  10. ^ Stardust Findings Suggest Comets More Complex Than Thought”. NASA (2006年12月14日). 2009年4月25日閲覧。
  11. ^ ぐんま天文台 ぐんま天文台で撮影・分光したニート彗星 (C/2001 Q4)
  12. ^ "Found: first amino acid on a comet"ニュー・サイエンティスト、17 August 2009
  13. ^ 井田 (2009)。
  14. ^ a b 彗星その本性と起源, p. 54.
  15. ^ a b Britt, R. R. (2001年11月29日). “Comet Borrelly Puzzle: Darkest Object in the Solar System”. Space.com. 2008年10月26日閲覧。
  16. ^ 広島大学宇宙科学センター 約40万倍も明るくなったホームズ彗星の詳細な観測”. 2013年5月10日時点のオリジナルよりアーカイブ。2010年1月11日閲覧。
  17. ^ 彗星その本性と起源, p. 56.
  18. ^ a b 彗星その本性と起源, p. 57.
  19. ^ 山本.中村(1984), p. 88.
  20. ^ Biermann, L. (1963). “The plasma tails of comets and the interplanetary plasma”. Space Science Reviews 1 (3): 553. doi:10.1007/BF00225271. 
  21. ^ C. M. Lisse, K. Dennerl, J. Englhauser, M. Harden, F. E. Marshall, M. J. Mumma, R. Petre, J. P. Pye, M. J. Ricketts, J. Schmitt, J. Trümper, R. G. West, others (1996). “Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2”. Science (American Association for the Advancement of Science) 274 (5285): 205-209. doi:10.1126/science.274.5285.205. https://doi.org/10.1126/science.274.5285.205. 
  22. ^ 石田卓也「太陽風多価イオン衝突における電荷交換反応」首都大学東京、修士論文(理学)、2012年3月。
  23. ^ a b Small Bodies: Profile”. NASA/JPL (2008年10月29日). 2009年4月26日閲覧。
  24. ^ Comet” (英語). Encyclopedia Britannica Online. 2008年6月16日時点のオリジナル[リンク切れ]よりアーカイブ。2009年4月26日閲覧。
  25. ^ IAU bulletin IB74
  26. ^ Reddy, F. (2006年4月3日). “New comet class in Earth's backyard” (英語). アストロノミー. 2009年1月27日時点のオリジナル[リンク切れ]よりアーカイブ。2009年4月29日閲覧。
  27. ^ Davidsson, B. (2008年). “Comets - Relics from the birth of the Solar System”. Uppsala University. 2009年4月25日閲覧。
  28. ^ Johnston, R. (2009年11月21日). “Known populations of solar system objects”. 2010年1月30日閲覧。
  29. ^ JPL comet orbital elements”. Jet Propulsion Lab. 2008年12月27日閲覧。
  30. ^ How Many Comets Are There?”. Rosetta FAQ. 欧州宇宙機関 (2007年11月9日). 2009年12月16日閲覧。
  31. ^ Licht, A. L. (1999). “The Rate of Naked-Eye Comets from 101 BC to 1970 AD”. Icarus (Elsevier) 137 (2): 355. doi:10.1006/icar.1998.6048. ISSN 0019-1035. https://doi.org/10.1006/icar.1998.6048. 
  32. ^ 彗星その本性と起源, p. 33.
  33. ^ Bortman, Henry (2004年9月29日). “Coming Soon: "Good" Jupiters”. Astrobiology Magazine. 2007年8月5日閲覧。
  34. ^ Kronk, Gary W.. “11P/Tempel-Swift-LINEAR”. Gary W. Kronk's Cometography. 2009年4月27日閲覧。
  35. ^ John E., Bortle. “Five Methods to Estimate a Comet's Brightness”. 2010年1月31日閲覧。
  36. ^ 山本.中村(1984), p. 115.
  37. ^ 例として、彗星の光度変化を解析したり、彗星の観測を支援 Vector
  38. ^ What is the difference between asteroids and comets?”. Rosetta FAQ. European Space Agency. 2009年4月25日閲覧。
  39. ^ What Are Asteroids And Comets?”. Near Earth Object Program FAQ. NASA. 2009年4月25日閲覧。
  40. ^ Shiga, D. (2008年1月24日). “Comet samples are surprisingly asteroid-like”. ニュー・サイエンティスト. 2009年4月25日閲覧。
  41. ^ 彗星その本性と起源, p. 246.
  42. ^ 林 悟; 柳澤 正久; 佐藤 勲; 長谷川 均; 中島 崇; 福島 英雄 (2000年10月). “P117 小惑星(201)Penelopeの形状(ポスターセッション口頭1)”. 日本惑星科学会秋期講演会予稿集 (日本惑星科学会) 2000: 51. NAID 110009392487. 
  43. ^ Quanzhi Ye, Qicheng Zhang (2020年4月6日). “Possible Disintegration of Comet C/2019 Y4 (ATLAS)”. The Astronomer's Telegram. 2020年4月10日閲覧。
  44. ^ SOHO analyes a kamikaze comet”. European Space Agency (2001年2月23日). 2009年4月26日閲覧。
  45. ^ 200年前、海王星に彗星衝突”. ナショナルジオグラフィック (2010年7月26日). 2016年5月22日閲覧。
  46. ^ Muir, H. (2007年9月25日). “Earth's water brewed at home, not in space”. ニュー・サイエンティスト. 2009年4月26日閲覧。
  47. ^ a b Ridpath, Ian (2008年7月3日). “Halley and his Comet”. A brief history of Halley's Comet. 2009年4月27日閲覧。
  48. ^ a b c Kronk, Gary W.. “2P/Encke”. Gary W. Kronk's Cometography. 2009年4月27日閲覧。
  49. ^ a b c d 山本.中村(1984), p. 18.
  50. ^ a b Arnett, B. (2000年1月14日). “ 'Official' Astronomical Names”. International Astronomical Union. 2006年3月5日閲覧。
  51. ^ Comet Names and Designations; Comet Naming and Nomenclature; Names of Comets2000年版・第3段落
  52. ^ a b 京都コンピュータ学院
  53. ^ Long Live the King - Scene 1”. Bayeux tapestry. Museum of Reading. 2009年4月17日閲覧。
  54. ^ 関戸堯海「『立正安国論』と『吾妻鏡』」『印度學佛教學研究』第45巻第1号、日本印度学仏教学会、1996年、 232-236頁、 doi:10.4259/ibk.45.232ISSN 0019-4344NAID 110002662725
  55. ^ 彗星その本性と起源, p. 226.
  56. ^ Aristotle (350 BCE). “Book I, part 6”. Meteorologica. Webster, E. W. (trans.). http://classics.mit.edu/Aristotle/meteorology.1.i.html 
  57. ^ Aristotle (350 BCE). “Book I, part 7”. Meteorologica. Webster, E. W. (trans.). http://classics.mit.edu/Aristotle/meteorology.1.i.html 
  58. ^ a b A Brief History of Comets I (until 1950)”. European Southern Observatory (2003年10月17日). 2012年12月9日時点のオリジナル[リンク切れ]よりアーカイブ。2009年4月27日閲覧。
  59. ^ Maik Meyer. Catalog of comet discoveries”. 2008年7月16日時点のオリジナル[リンク切れ]よりアーカイブ。2008年5月15日閲覧。
  60. ^ a b 彗星その本性と起源, p. 231.
  61. ^ Newton, Isaac (1687). “Lib. 3, Prop. 41”. Philosophiæ Naturalis Principia Mathematica. Royal Society of London 
  62. ^ Halleio, Edmundo (1705). “IV. Astronomiæ cometicæ synopsis, Autore Edmundo Halleio apud Oxonienses Geometriæ Professore Saviliano, & Reg. Soc. S”. Philosophical Transactions 24: 1882-1899. doi:10.1098/rstl.1704.0064. https://doi.org/10.1098/rstl.1704.0064. 
  63. ^ Pepys, Samuel (1665). “March 1st”. Diary of Samuel Pepys. http://en.wikisource.org/wiki/Diary_of_Samuel_Pepys/1665/March#March_1st 
  64. ^ Sagan, Carl; Druyan, Ann (1985). Comet. Random House. pp. 42-43. ISBN 0-394-54908-2 
  65. ^ Sagan, Carl (1985).
  66. ^ ジェームズ・トムソン『四季』(1730年)
  67. ^ カール・セーガン / アン・ドルーヤン『ハレー彗星』(1985年)
  68. ^ Sagan, Carl (1985). 117
  69. ^ Kronk, Gary W.. “3D/Biela”. Gary W. Kronk's Cometography. 2022年1月27日閲覧。
  70. ^ Whipple, Fred L. (1950). “A comet model. I. The acceleration of Comet Encke”. Astrophysical Journal 111: 375-394. doi:10.1086/145272. 
  71. ^ a b 門野、中村、杉野『異星の踏査-「アポロ」から「はやぶさ」へ展図録』(2007) pp.179-188
  72. ^ Ridpath, Ian (2008年7月3日). “Awaiting the Comet”. A brief history of Halley's Comet. 2008年8月11日閲覧。
  73. ^ “Families Learning of 39 Cultists Who Died Willingly”. New York Times. (1997年3月29日). http://query.nytimes.com/gst/fullpage.html?res=9400E7DB133AF93AA15750C0A961958260&sec=health&spon=&pagewanted=all 2008年11月9日閲覧. "According to material the group posted on its Internet site, the timing of the suicides were probably related to the arrival of the Hale-Bopp comet, which members seemed to regard as a cosmic emissary beckoning them to another world." 
  74. ^ Kronk, Gary W.. “C/1975 V1 (West)”. Gary W. Kronk's Cometography. 2006年3月5日閲覧。
  75. ^ Kronk, Gary W.. “29P/Schwassmann-Wachmann 1”. Gary W. Kronk's Cometography. 2009年4月27日閲覧。
  76. ^ Kronk, Gary W.. “95P/Chiron”. Gary W. Kronk's Cometography. 2009年4月27日閲覧。
  77. ^ Kronk, Gary W.. “137P/Shoemaker-Levy 2”. Gary W. Kronk's Cometography. 2009年4月27日閲覧。
  78. ^ Kronk, Gary W.. “C/1979Q1 SOLWIND1” (英語). Cometography Home Page. 2010年8月4日時点のオリジナル[リンク切れ]よりアーカイブ。2010年8月8日閲覧。
  79. ^ a b Irish Astronomical Journal, Vol. 6, p. 191






彗星と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



彗星のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの彗星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2022 GRAS Group, Inc.RSS