核兵器 歴史

核兵器

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/09 13:23 UTC 版)

歴史

原爆の被害者
核兵器使用後の都市(1945年、広島)

第二次世界大戦と核兵器開発

1930年代中性子による原子核の分裂が連鎖的に行われれば、莫大なエネルギーが放出されると仮説が立てられていた。オットー・ハーンによるウランの核分裂の発見を経て、1939年レオ・シラードエンリコ・フェルミフレデリック・ジョリオ=キュリーの3グループはウランの中で中性子数が増倍する現象を発見し、これによって連鎖反応が可能になることを示した。それを受けて各国で原子炉の開発が開始された。

当初は必ずしも兵器目的ではなかったが、この年の9月第二次世界大戦が勃発すると、核分裂の巨大エネルギーを兵器として利用する原子爆弾の可能性が活発に議論されることになる。1940年5月3日付けの理研の仁科芳雄東京帝国大学理学部化学科木村健二郎等の論文に、ウラン238高速中性子を照射した実験において、今では核兵器の爆発によって生成することが知られているネプツニウム237[2] を生成した[3] ことが記され、同年、アメリカ合衆国の物理学誌フィジカル・レビューに掲載された[4]。また、同実験では、1回の核分裂で10個以上の中性子が放出され核分裂連鎖反応超臨界)を伴うことが知られている対称核分裂による生成物[5] が生成されたことが、『Fission Products of Uranium produced by Fast Neutrons(高速中性子によって生成された核分裂生成物)』と題して、同年7月6日付けの英国の学術雑誌ネイチャーに掲載された[6][7]

原爆の秘密裏の検討は連合国側・枢軸国側ともに行われていたとされる[注釈 1]

マンハッタン計画

トリニティ実験での核爆発 (1945)

この時代で原爆開発を組織的に最も推進できたのはアメリカ合衆国であった。当時のアメリカ合衆国にはナチス・ドイツユダヤ人迫害から逃れてアメリカに移民した優秀な科学者が大勢おり、その一人のレオ・シラードが1939年8月アルベルト・アインシュタインの署名を得て、大統領のフランクリン・ルーズベルト核連鎖反応の実現への協力とアドルフ・ヒトラーの核保有の危険性を訴える手紙を送った。これがアメリカ合衆国の原爆開発に至る最も早いきっかけとなった。その後、1941年10月にウラン爆弾が実現可能であることを伝える報告書がイギリスMAUD委員会からもたらされ、1942年6月に原子爆弾の秘密開発プロジェクト、マンハッタン計画が開始された[8]

ウラン濃縮プラント・プルトニウム生産炉の各巨大工場の建設、そしてロバート・オッペンハイマーが率いるロスアラモス研究所には優秀な科学者を全米から集め、アメリカ合衆国の軍・産・学の総力を挙げた国家プロジェクトとなった。最初の原爆は1945年7月16日に完成(3個)し、そのうち1個(ガジェット)によりアラモゴードの砂漠で世界最初の原爆実験を実施した。残りの2つの原爆が日本に投下された。

日本への原爆投下

世界初の原子爆弾の実使用は、1945年8月6日午前8時15分に広島に対して濃縮ウラン型原爆リトルボーイB-29エノラ・ゲイ)からの投下で実行された。ついで1945年8月9日午前11時2分には長崎に対してプルトニウム爆縮型原爆ファットマンB-29ボックスカー)から投下された。

原爆投下により両都市は一瞬にして壊滅し、数十万人が無差別に殺害された。原爆炸裂によるキノコ雲の頂点は17kmと成層圏に達し、雲からは放射性物質を含む黒い雨が30kmの範囲に降り注ぎ、被曝の人的被害を拡大した。

原爆の成功に軍当局は喜んだが、原爆使用の実体が明らかになってくると世界は震撼し、原爆開発に関係した科学者からも原爆反対の声があがっていくことになる。

核の力によるアメリカ合衆国の単独覇権は想定通りとならなかった。予想以上に早く、1949年ソ連原爆実験に成功したからである。これ以降、世界は核の均衡の上の冷戦の時代に突入する。

なお、ソビエト連邦(ソ連)の原爆開発には、CFR(外交問題評議会)メンバーであり、ルーズベルト政権の商務長官兼任大統領主席補佐官であったハリー・ホプキンスが、意図的にソ連に原爆技術を移転(ヴェノナ文書も参照)したという、レーシー・ジョーダン(en:George Racey Jordan少佐のアメリカ議会委員会での宣誓供述がある[9]

冷戦時代の核競争

地下サイロから発射されるドニエプルロケット(1960年代)
アメリカ合衆国(青)とソビエト連邦(ロシア、赤)の核兵器保有量の推移(1945年-2014年)
バスター・ジャングル作戦の核実験を至近距離で見つめるアメリカ陸軍兵士たち。核攻撃直後の被爆地における作戦行動能力の調査という名目であったが、人体への影響を調査する実験体であったとも言われる。
トライデント I ミサイルとその再突入体(1981年10月2日)

冷戦時代には、アメリカ合衆国とソ連の間で核兵器の大量製造、配備が行われた。1952年にイギリス、1960年フランス1964年中華人民共和国(中国)、1974年インドが原子爆弾を開発・保有した。1952年にアメリカ合衆国、1955年にソビエト連邦、1958年にイギリス、1967年に中国、1968年にフランスが水素爆弾を開発・保有した。核兵器の量は地球上の全人類を滅ぼすのに必要な量を遥かに上回っていた。核兵器保有国は最盛期には、アメリカ合衆国は1966年に約32,000発、ソビエト連邦は1986年に約45,000発、イギリスは1981年に350発、フランスは1992年に540発、中国は1993年に435発、五か国合計で1986年に約7万発[10] を保有していた。また、核による先制攻撃を通じて相手国に致命的なダメージを負わせ、戦争に勝利するという戦略を不可能にするべく、相手国の攻撃を早期に探知し、報復するためのシステムが構築された。この戦略は相互確証破壊と呼ばれ、冷戦期の核抑止をめぐる議論で重要な役割を果たした。また核兵器を搭載したロケット、ミサイルの性能を誇示するため宇宙開発競争が起こり、ボストーク1号の有人宇宙飛行、アポロ11号の有人月面着陸に繋がった。

また核兵器の小型化にともない冷戦期には戦略的な使用のみならず戦場などで使用される戦術核兵器も開発され、同時代のミサイルの信頼性の低さを補うための対空核ミサイル、潜水艦を確実に沈めるための核魚雷、敵部隊を一撃で殲滅するための核砲弾など、ありとあらゆるものの核兵器化が行われた。戦略爆撃機弾道弾搭載原子力潜水艦(SSBN)大陸間弾道弾(ICBM)の三つは戦略核の三本柱(トライアド)といわれた。

冷戦期には核兵器管理に関連してブロークン・アロー(核兵器の紛失・落下事故)も問題となった(パロマレス米軍機墜落事故チューレ空軍基地米軍機墜落事故を参照)。

核の冬

核兵器の大量使用の後には、地表は放射性物質で汚染され、また放射性物質を含む灰(放射性降下物)が降ることになる。巻き上がった灰によって日光が遮られ、地表の気温が低下し、植物が枯れ、人間が生存できない環境になることが指摘された。このような状態は核の冬と呼ばれる。この核の冬を生き延びるための手段は用意されなかった。爆心からある程度離れた地点で、核爆発時の熱、爆風、放射線を逃れ、核爆発後の放射能の減衰を待つための核シェルターと呼ばれる地下施設が考案されたのみである。このように核兵器を使用すること自体が人類の絶滅に直結するため、核兵器の使用につながる戦争を抑止できるとされる。

核兵器の恐怖や核戦争のリスク、放射線による殺傷の残酷さなどは知識人、作家、政治家、政治活動家、一般市民など多くの人々の関心を呼んだ。そのため反核運動が生まれた。一方で、核兵器を廃絶することで通常兵器による戦争が誘発されるため、平和のために核抑止力を維持すべきとの主張もみられる。

冷戦終結後の核兵器

アメリカ合衆国とソ連は、1991年7月に第一次戦略兵器削減条約 (START I) を締結し、核兵器の削減が進んでいた。1991年のソ連崩壊後も、継承国である現在のロシア連邦が戦略兵器削減条約を引き継ぐ形で進行していた。

しかし第二次戦略兵器削減条約は1993年に条約を締結したものの発効せず、第三次戦略兵器削減条約の交渉も不調となった。2001年に第一次戦略兵器削減条約が定めた廃棄が完了し、2002年モスクワ条約では核兵器の配備数の削減を削減(廃棄は義務付けず保有は容認)を定めた。2009年1月に就任したアメリカ合衆国のバラク・オバマ大統領は、核兵器軍縮政策の最終目標として核兵器保有国の協調による核兵器の廃絶を掲げ、アメリカ合衆国とロシアは2010年4月第四次戦略兵器削減条約を締結した。

ソ連崩壊後は、経済情勢の悪化や汚職の蔓延に伴う管理体制の不備から、ロシアから第三国への兵器の流出、あるいは技術者の流出が増加しているとされる。かつての核大国以外での核兵器の使用、誤使用などのリスクは、冷戦時代とは違った意味で増大している。

これらのことから、自国の安全という核抑止論で配備された核兵器が、安全を脅かす存在そのものとして世界各国に散らばり、さらにそれらに対する安全としてさらに増加し、全世界を巻き込む騒動の火種となりつつあることを示している。

1998年にはパキスタンが原子爆弾を開発・保有した。近年ではカシミール地方の領有権を巡るインドパキスタンの国境紛争が核兵器の使用につながる可能性があると懸念された。

また北朝鮮は体制維持を目的に、近隣他国に対する交渉手段として、核兵器の開発を継続し、2006年10月9日2009年5月25日2013年2月12日2016年1月6日同9月9日2017年9月3日に核実験を実施した。

核兵器削減への取り組み

核兵器の計画時から現在までの、核兵器の開発・保有・使用に対する、管理・規制・反対・廃絶などの動きには以下がある。

第二次世界大戦中の原爆使用に反対する動きはフランクレポートがあり、第二次世界大戦終了後にはパグウォッシュ会議などがある。

1959年南極条約以来、各地域で非核地帯が条約で設定された。一部の条約は核保有国も参加している。

核実験の制限には、1963年の部分的核実験禁止条約があるが、地下核実験を含め禁止する1996年の包括的核実験禁止条約 (CTBT) は、2022年現在も発効していない。ただし臨界前核実験はいずれの条約でも禁止されていない。

核兵器の拡散防止では、1968年に国連総会核拡散防止条約 (NPT) が採択された。これはアメリカ合衆国、ソ連、イギリス、フランス、中国(五大国)のみを国際的に認められた「核兵器保有国」として核軍縮義務を規定し、他の「非核兵器保有国」の核兵器保有を禁止し「核の平和利用」に限定するものである。

1996年には国際司法裁判所が勧告的意見「核兵器の威嚇または使用の合法性国際司法裁判所勧告的意見」の判断[11]を下し、そこでは「厳格かつ効果的な国際管理の下において、すべての側面での核軍縮に導く交渉を誠実に追求し、かつ完結させる義務が存在する」[12]とした。

これまで世界合計で累計2000回以上の核爆発が起きた。赤:ロシア/ソビエト連邦、青:フランス、薄青:米国、紫:英国、黒:イスラエル、黄色:中国、オレンジ:インド、茶色:パキスタン、緑:北朝鮮、薄緑:核兵器・実験被害国。インド洋南部の黒い点はヴェラ事件の地点。

主要な核兵器保有国間であるアメリカ合衆国とソ連は、1969年から戦略兵器制限交渉 (SALT) が行われ、1972年には第一次戦略兵器制限交渉 (SALT-I) および弾道弾迎撃ミサイル制限条約(ABM条約)が締結されたが、後継の第二次戦略兵器制限交渉 (SALT-II) はソビエト連邦によるアフガニスタン侵攻に反発するアメリカ合衆国議会により批准されずに無効化した。

1982年からは戦略兵器削減条約 (START) が開始され、1987年には中距離核戦力全廃条約が締結され、1991年に両国政府が相互査察により条約の履行を確認した。

1991年には第一次戦略兵器削減条約 (START I) が締結され、2001年に両国政府が相互査察で条約の履行を確認した。1993年には後継の第二次戦略兵器削減条約 (START II) が調印され、アメリカ合衆国上院は批准したがロシア議会が批准せず、1997年に米露両国政府が条約の履行時期の2007年への延期とミサイル防衛システムの配備を制限する追加議定書に署名し、ロシア議会は批准したがアメリカ上院が批准せず条約は発効しなかった。

2001年にはミサイル防衛を推進するアメリカ合衆国によって弾道弾迎撃ミサイル制限条約の破棄が行われたため、ロシアは第二次戦略兵器削減条約を実行しないと表明した。2002年にはモスクワ条約が締結された。2010年には第四次戦略兵器削減条約が締結された。

国連総会では1994年から2012年まで19年連続で核兵器廃絶決議を採択している。2009年はアメリカ合衆国が初めて共同提案国となった。2009年にアメリカ合衆国のオバマ大統領は、アメリカ合衆国大統領としては初めて核廃絶に向けた「核兵器のない世界(核なき世界)」の演説を行い、ノーベル平和賞を受賞した。しかしアメリカ合衆国は核兵器を保有し続けることを言明した。ロシア、中国も核放棄を否定した。2012年には核兵器廃絶決議は184か国の賛成で採択された[13]

2010年4月にはアメリカ合衆国連邦政府ロシア政府は第一次戦略兵器削減条約からさらに核弾頭と運搬手段を削減する第四次戦略兵器削減条約に署名した。


注釈

  1. ^ 例えば、U-234に見られるように核兵器に必要なウラン鉱石をドイツから日本へ運搬する計画が存在した(日本の原子爆弾開発を参照)。

出典

  1. ^ a b c d e f 日本国外務省 (2016年). “日本の軍縮・不拡散外交(第七版) 第3部 核軍縮,平成28年”. 2019年5月28日閲覧。
  2. ^ ネプツニウム-237(237Np)”. 原子力資料情報室. 2018年2月12日閲覧。
  3. ^ 仁科芳雄博士生誕120周年記念講演会 日本現代物理学の父 仁科芳雄博士の輝かしき業績―ウラン-237と対称核分裂の発見―表1関連事項年表(p.40)”. 仁科記念財団(2010年12月). 2018年2月12日閲覧。
  4. ^ NISHINA Memorial Foundation 2008 - Induced β-Activity of Uranium by Fast Neutrons(p.15)”. 仁科記念財団. 2018年2月12日閲覧。
  5. ^ Fission Chain Reaction_Trends of Fission Products_Symmetric Fission Products”. The Chemistry LibreTexts library(Jan 1, 2016). 2018年2月12日閲覧。
  6. ^ Y. NISHINA , T. YASAKI , H. EZOE , K. KIMURA & M. IKAWA(1940)"Fission Products of Uranium produced by Fast Neutrons".United Kingdo.Nature Research.2016年8月24日閲覧)
  7. ^ NISHINA Memorial Foundation 2008 - "Fission Products of Uranium produced by Fast Neutrons(p.16)”. 仁科記念財団. 2018年2月12日閲覧。
  8. ^ ローズ、リチャード『原子爆弾の誕生』神沼二真、渋谷泰一 訳、啓学出版、1993年。  紀伊國屋書店、1995年、〈上〉ISBN 4-314-00710-9,〈下〉ISBN 4-314-00711-7.
    Rhodes, Richard (1987). The Making of the Atomic Bomb. Simon & Schuster. ISBN 0-684-81378-5 (pbk) 
  9. ^ George Racey Jordan (1965). From Major Jordan's diaries. Western Islands 
  10. ^ Bulletin of the Atomic Scientist. “Global nuclear stockpiles 1945–2006”. 2009年4月25日閲覧。
  11. ^ 103. LEGALITY OF THE THREAT OR USE OF NUCLEAR WEAPONS Advisory Opinion of 8 July 1996”. United Nations. 2022年6月28日閲覧。
  12. ^ 第53回国連総会:新アジェンダ連合(NAC)決議 核兵器のない世界へ:新アジェンダの必要性(長崎大学核兵器廃絶研究センター)
  13. ^ United Nations>General Assembly>67th session>Resolutions>Convention on the prohibition of the Use of Nuclear Weapons
  14. ^ 「米国の戦略核運用政策の変遷と現状」松山健二,国立国会図書館調査及び立法考査局 2009.1
  15. ^ 「地図で読む世界情勢 第2部 これから世界はどうなるか」p27 ジャン-クリストフ・ヴィクトル、ヴィルジニー・レッソン、フランク テタール 鳥取絹子訳 草思社 2007年8月23日第1刷
  16. ^ 用法例:東西の首脳は最終兵器・核を背負って対峙した
  17. ^ ロシアが繰り返す「核の脅し」 その背景は 小泉悠 2015年4月3日配信 2021年9月24日閲覧。
  18. ^ 核は「使えぬ兵器」から「使える兵器」へ変貌 被害極小化も…「心理的ハードル下がった」恐れ - 産経ニュース 2016年5月29日配信 2018年3月4日閲覧。
  19. ^ トランプ、先制核攻撃へ一歩 小型核弾頭開発を表明 - ニューズウィーク日本語版 2018年2月5日配信 2018年3月4日閲覧
  20. ^ “Japan mulled possessing "defensive" nuke weapons in 1958”. Mainichi. (2013年3月17日). オリジナルの2013年3月20日時点におけるアーカイブ。. https://web.archive.org/web/20130320221741/http://mainichi.jp/english/english/newsselect/news/20130317p2a00m0na011000c.html 2013年3月17日閲覧。 
  21. ^ “64年の中国核実験対応 核潜在力に原発を”. 東京新聞. (2013年2月26日). オリジナルの2013年2月27日時点におけるアーカイブ。. https://web.archive.org/web/20130227085558/http://www.tokyo-np.co.jp/article/national/news/CK2013022602000118.html 2013年3月17日閲覧。 
  22. ^ 日本の軍縮・不拡散外交 - 外務省
  23. ^ http://hw001.spaaqs.ne.jp/iica/1006mr.pdf[リンク切れ]
  24. ^ 核不拡散に関する日本のこれまでの取組みとその分析に関する研究(核不拡散・核セキュリティ総合支援センター)pp.5〜6
  25. ^ 第84回国会 参議院 予算委員会 第8号 昭和53年3月11日(国会会議録検索システム)
  26. ^ アメリカ科学者連盟1997年7月2日「国防総省、初の臨界前核実験成功を公表
  27. ^ ボストン大学「グローバル・ビート」内 ベロナ財団1997年12月10日発表「ロシア、臨界前核実験(草案START-II法)を実行
  28. ^ NASA Developing Asteroid Interceptor to Fend off Armageddon WIRED 2007年8月7日配信 2021年9月24日閲覧。
  29. ^ 'Terminator' asteroids could re-form after nuke. New Scientist April 2010 by David Shiga, Houston; Magazine issue 2751.
  30. ^ 最新科学論シリーズ13 最新巨大プロジェクト (学研 1991年)





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「核兵器」の関連用語

核兵器のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



核兵器のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの核兵器 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS