太陽系外惑星とは? わかりやすく解説

Weblio 辞書 > ビジネス > 新語時事用語辞典 > 太陽系外惑星の意味・解説 

太陽系外惑星


たいようけいがい‐わくせい〔タイヤウケイグワイ‐〕【太陽系外惑星】

読み方:たいようけいがいわくせい

系外惑星


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/11 07:06 UTC 版)

太陽系外惑星(たいようけいがいわくせい、英語: Extrasolar planet)または系外惑星英語: Exoplanet[3])とは、太陽系の外にある、太陽以外の恒星公転する惑星である。


注釈

  1. ^ a b ただしこの統計には太陽系外惑星ではなく、国際天文学連合による定義では質量が木星の13倍を超えることから褐色矮星に分類される(もしくはその可能性がある)天体も含まれている。一方で、この統計には恒星間天体などの太陽を主星として扱っている天体(オウムアムアボリソフ彗星 (2I/Borisov))も含まれているが、これらの天体の分は独自に差し引いている。同様に、惑星系を持つことが確認されている恒星からも太陽の分は差し引いている。
  2. ^ a b この5分の1の統計のための「太陽のような」恒星とは、G型星を指している。太陽のような恒星のデータは入手できなかったため、この統計はK型星のデータを外挿したものである。
  3. ^ a b ここでの「地球サイズ」の惑星とは1~2地球半径の惑星を指す。
  4. ^ この5分の1の統計のための「ハビタブルゾーン」は、放射束が地球の0.25倍~4倍の領域 (太陽系では0.5~2auに相当)を指す。
  5. ^ 恒星全体の約4分の1はG型星、もしくはK型星である。銀河系に含まれる恒星の数は正確には分かってないが、仮に2,000億個と仮定すると、銀河系にはG型星とK型星は合わせて500億個存在することになる。そしてそのうちの約5分の1(正確には22%)なので、ハビタブルゾーンにある地球サイズの惑星は銀河系内に110億個存在していることになる。
  6. ^ 日本語名について出典を表記していないものは日本天文教育普及研究会の会誌(天文教育2016年3月号 Vol.28 No.2、著者 大西浩次)による。なお、これらの名称は公式機関が正式に決定したものではない未確定な表記であることに留意。
  7. ^ 命名当初の表記は「Lippershey」だったが、2016年1月20日に現在の表記に変更された。
  8. ^ モンゴルの命名対象であったHAT-P-21とHAT-P-21bの名称は2019年12月の発表では公表されておらず、約3ヶ月後の2020年3月1日に現在の名称が公表・命名された[39]
  9. ^ 命名当初の表記は「Kamui」だったが、後に「Kamuy」が主流の英字表記であるという指摘から異議申し立てが行われ、2020年2月13日に現在の表記に変更された[39]

出典

  1. ^ “Planet Population is Plentiful”. ESO. (2012年1月11日). https://www.eso.org/public/news/eso1204/ 2018年10月6日閲覧。 
  2. ^ Exoplanet Transit Database: TrES-3b”. astro.cz. Czech Astronomical Society. 2018年10月6日閲覧。
  3. ^ exoplanet Meaning in the Cambridge English Dictionary”. Cambridge Dictionary. 2018年10月6日閲覧。
  4. ^ a b c The Extrasolar Planet Encyclopaedia Catalog
  5. ^ a b Landau, Elizabeth (2017年11月12日). “Overlooked Treasure: The First Evidence of Exoplanets”. NASA. 2018年10月6日閲覧。
  6. ^ a b Jerry Colen (2013年11月4日). “Kepler”. NASA. 2013年11月5日時点のオリジナルよりアーカイブ。2018年10月6日閲覧。
  7. ^ a b NASA Kepler Results Usher in a New Era of Astronomy” (2013年11月4日). 2018年10月6日閲覧。
  8. ^ Tenenbaum, P.; Jenkins, J. M.; Seader, S.; Burke, C. J.; Christiansen, J. L.; Rowe, J. F.; Caldwell, D. A.; Clarke, B. D. et al. (2013). “Detection of Potential Transit Signals in the First 12 Quarters of Kepler Mission Data”. The Astrophysical Journal Supplement Series 206: 5. arXiv:1212.2915. Bibcode2013ApJS..206....5T. doi:10.1088/0067-0049/206/1/5. 
  9. ^ "My God, it's full of planets! They should have sent a poet" (Press release). Planetary Habitability Laboratory, University of Puerto Rico at Arecibo. 3 January 2012. 2018年10月6日閲覧
  10. ^ Santerne, A.; Díaz, R. F.; Almenara, J.-M.; Lethuillier, A.; Deleuil, M.; Moutou, C. (2013). “Astrophysical false positives in exoplanet transit surveys: Why do we need bright stars?”. SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. Eds.: L. Cambresy: 555. arXiv:1310.2133. Bibcode2013sf2a.conf..555S. 
  11. ^ a b Cassan, A.; Kubas, D.; Beaulieu, J. -P.; Dominik, M.; Horne, K.; Greenhill, J.; Wambsganss, J.; Menzies, J. et al. (2012). “One or more bound planets per Milky Way star from microlensing observations”. Nature 481 (7380): 167–169. arXiv:1202.0903. Bibcode2012Natur.481..167C. doi:10.1038/nature10684. PMID 22237108. 
  12. ^ Sanders, R. (2013年11月4日). “Astronomers answer key question: How common are habitable planets?”. newscenter.berkeley.edu. 2018年10月6日閲覧。
  13. ^ Petigura, E. A.; Howard, A. W.; Marcy, G. W. (2013). “Prevalence of Earth-size planets orbiting Sun-like stars”. Proceedings of the National Academy of Sciences 110 (48): 19273–19278. arXiv:1311.6806. Bibcode2013PNAS..11019273P. doi:10.1073/pnas.1319909110. 
  14. ^ Khan, Amina (2013年11月4日). “Milky Way may host billions of Earth-size planets”. Los Angeles Times. http://www.latimes.com/science/la-sci-earth-like-planets-20131105,0,2673237.story 2018年10月6日閲覧。 
  15. ^ Dumé, Isabelle (2005年2月11日). “Astronomers find smallest exoplanet”. Physics World. 2024年7月11日閲覧。
  16. ^ HR 2562 b”. NASA Exoplanet Archive. 2018年10月6日閲覧。
  17. ^ Konopacky, Quinn M.; Rameau, Julien; Duchêne, Gaspard; Filippazzo, Joseph C.; Giorla Godfrey, Paige A.; Marois, Christian; Nielsen, Eric L. (2016). “Discovery of a Substellar Companion to the Nearby Debris Disk Host HR 2562”. The Astrophysical Journal Letters 829: 10. arXiv:1608.06660. Bibcode2016ApJ...829L...4K. doi:10.3847/2041-8205/829/1/L4. http://dro.dur.ac.uk/20763/1/20763.pdf. 
  18. ^ Zachos, Elaine (2018年2月5日). “More Than a Trillion Planets Could Exist Beyond Our Galaxy – A new study gives the first evidence that exoplanets exist beyond the Milky Way.”. National Geographic Society. 2018年10月6日閲覧。
  19. ^ Mandelbaum, Ryan F. (2018年2月5日). “Scientists Find Evidence of Thousands of Planets in Distant Galaxy”. Gizmodo. 2018年10月6日閲覧。
  20. ^ a b c Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan et al. (2016-08-25). “A terrestrial planet candidate in a temperate orbit around Proxima Centauri” (英語). Nature 536 (7617): 437–440. arXiv:1609.03449. Bibcode2016Natur.536..437A. doi:10.1038/nature19106. ISSN 0028-0836. PMID 27558064. http://www.nature.com/nature/journal/v536/n7617/full/nature19106.html. 
  21. ^ Overbye, Dennis (2015年1月6日). “As Ranks of Goldilocks Planets Grow, Astronomers Consider What's Next”. The New York Times. https://www.nytimes.com/2015/01/07/science/space/as-ranks-of-goldilocks-planets-grow-astronomers-consider-whats-next.html 2018年10月6日閲覧。 
  22. ^ Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Dodson-Robinson, Sally; Marley, Mark S.; Morley, Caroline V.; Wright, E. L. (2014). “WISE Y Dwarfs As Probes of the Brown Dwarf-Exoplanet Connection”. The Astrophysical Journal 783 (2): 68. arXiv:1401.1194. Bibcode2014ApJ...783...68B. doi:10.1088/0004-637X/783/2/68. 
  23. ^ Neil DeGrasse Tyson in Cosmos: A Spacetime Odyssey as referred to by National Geographic
  24. ^ Strigari, L. E.; Barnabè, M.; Marshall, P. J.; Blandford, R. D. (2012). “Nomads of the Galaxy”. Monthly Notices of the Royal Astronomical Society 423 (2): 1856–1865. arXiv:1201.2687. Bibcode2012MNRAS.423.1856S. doi:10.1111/j.1365-2966.2012.21009.x.  estimates 700 objects >10−6 solar masses (roughly the mass of Mars) per main-sequence star between 0.08 and 1 Solar mass, of which there are billions in the Milky Way.
  25. ^ ESO’s SPHERE Unveils its First Exoplanet”. www.eso.org. 2018年10月6日閲覧。
  26. ^ a b c d e Hessman, F. V.; Dhillon, V. S.; Winget, D. E.; Schreiber, M. R.; Horne, K.; Marsh, T. R.; Guenther, E.; Schwope, A.; Heber, U. (2010). "On the naming convention used for multiple star systems and extrasolar planets". arXiv:1012.0707 [astro-ph.SR]。
  27. ^ a b 惑星名に名前を! 太陽系外惑星系に名前をつけよう”. 日本天文協議会IAU 太陽系外惑星系命名支援ワーキンググループ. 2018年10月6日閲覧。
  28. ^ IAUのプレスリリース、Final Results of NameExoWorlds Public Vote Released
  29. ^ 国際天文学連合「太陽系外惑星命名キャンペーン」一般投票最終結果 国立天文台
  30. ^ a b 学生団体Libertyerが提案した惑星系の名前が国際天文学連合(IAU)に採用されました”. 法政大学 (2016年1月15日). 2019年6月29日閲覧。
  31. ^ a b 地球に似た組成の大気を持つスーパーアース”. AstroArts (2017年11月21日). 2019年7月18日閲覧。
  32. ^ a b 太陽系外惑星に日本の神の名 命名「アマテル」”. 日本経済新聞 (2015年12月16日). 2019年7月18日閲覧。
  33. ^ a b 太陽系外惑星に私たち提案の名前が命名されました天文同好会「岡山アストロクラブ」
  34. ^ Name an Exoplanet - IAU100 NameExoWorlds gives every country in the world the opportunity to name an exoplanet and its host star”. Name Exoworlds. International Astronomical Union (2019年6月6日). 2019年6月29日閲覧。
  35. ^ a b List of stars and planets | IAU100 Name ExoWorlds - An IAU100 Global Event”. Name Exoworlds. International Astronomical Union. 2019年6月29日閲覧。
  36. ^ 太陽系外惑星命名キャンペーン~IAU100 Name ExoWorlds”. 国立天文台. 2019年6月29日閲覧。
  37. ^ キャンペーンについて”. 国立天文台. 2019年6月29日閲覧。
  38. ^ a b Approved Names | IAU100 Name ExoWorlds - An IAU100 Global Event”. Name Exoworlds. International Astronomical Union. 2020年4月27日閲覧。
  39. ^ a b c d Eric Mamajek. “IAU Catalog of Star Names” (txt). International Astronomical Union. 2020年4月27日閲覧。
  40. ^ a b 太陽系外惑星系の名称決定、日本からの命名は「カムイ」、「ちゅら」”. 国立天文台 (2019年12月17日). 2020年1月1日閲覧。
  41. ^ NameExoWorlds 2022 | IAU NameExoWorlds 2022 Edition”. NameExoworlds. International Astronomical Union. 2023年6月12日閲覧。
  42. ^ "IAU Selects Names for 20 Exoplanetary Systems — The NameExoWorlds global contest names the next set of exoplanets and host stars" (Press release). International Astronomical Union. 7 June 2023. 2023年6月12日閲覧
  43. ^ NameExoWorlds 2022 | 2022 Approved Names”. NameExoworlds. International Astronomical Union. 2023年6月12日閲覧。
  44. ^ 1992 --"The Year the Milky Way's Planets Came to Life"” (English). Daily Galaxy (2017年1月9日). 2018年10月6日閲覧。
  45. ^ a b Wolszczan, A.; Frail, D. A. (1992). “A planetary system around the millisecond pulsar PSR1257 + 12”. Nature 355 (6356): 145–147. Bibcode1992Natur.355..145W. doi:10.1038/355145a0. 
  46. ^ Mayor, Michael; Queloz, Didier (1995). A Jupiter-mass companion to a solar-type star. 378. pp. 355–359. Bibcode1995Natur.378..355M. doi:10.1038/378355a0. 
  47. ^ “These May Be the First Planets Found Outside Our Galaxy”. National Geographic. (2018年2月5日). https://news.nationalgeographic.com/2018/02/exoplanets-discovery-milky-way-galaxy-spd/ 2018年10月6日閲覧。 
  48. ^ Eli Maor (1987). “Chapter 24: The New Cosmology”. To Infinity and Beyond: A Cultural History of the Infinite. Originally in De l'infinito universo et mondi [On the Infinite Universe and Worlds] by Giordano Bruno (1584).. Boston,MA: Birkhäuser. p. 198. ISBN 978-1-4612-5396-9. https://books.google.com/?id=v0btBwAAQBAJ&pg=PA198&dq=infinity+of+worlds+of+the+same+kind+as+our+own#v=onepage&q=infinity%20of%20worlds%20of%20the%20same%20kind%20as%20our%20own&f=false 2018年10月6日閲覧。 
  49. ^ Newton, Isaac; I. Bernard Cohen; Anne Whitman (1999) [1713]. The Principia: A New Translation and Guide. University of California Press. p. 940. ISBN 978-0-520-08816-0 
  50. ^ Struve, Otto (1952). “Proposal for a project of high-precision stellar radial velocity work”. The Observatory 72: 199–200. Bibcode1952Obs....72..199S. http://astro.berkeley.edu/~gmarcy/struve.html. 
  51. ^ Jacob, W. S. (1855). “On Certain Anomalies presented by the Binary Star 70 Ophiuchi”. Monthly Notices of the Royal Astronomical Society 15 (9): 228–230. Bibcode1855MNRAS..15..228J. doi:10.1093/mnras/15.9.228. https://books.google.com/books?id=pQsAAAAAMAAJ&pg=PA228. 
  52. ^ See, T. J. J. (1896). “Researches on the orbit of 70 Ophiuchi, and on a periodic perturbation in the motion of the system arising from the action of an unseen body”. The Astronomical Journal 16: 17-23. Bibcode1896AJ.....16...17S. doi:10.1086/102368. 
  53. ^ Sherrill, T. J. (1999). “A Career of Controversy: The Anomaly of T. J. J. See”. Journal for the History of Astronomy 30 (98): 25–50. Bibcode1999JHA....30...25S. doi:10.1177/002182869903000102. http://www.shpltd.co.uk/jha.pdf. 
  54. ^ van de Kamp, P. (1969). “Alternate dynamical analysis of Barnard's star”. Astronomical Journal 74: 757–759. Bibcode1969AJ.....74..757V. doi:10.1086/110852. 
  55. ^ Boss, Alan (2009). The Crowded Universe: The Search for Living Planets. Basic Books. pp. 31–32. ISBN 978-0-465-00936-7 
  56. ^ Bailes, M.; Lyne, A. G.; Shemar, S. L. (1991). “A planet orbiting the neutron star PSR1829–10”. Nature 352 (6333): 311–313. Bibcode1991Natur.352..311B. doi:10.1038/352311a0. 
  57. ^ Lyne, A. G.; Bailes, M. (1992). “No planet orbiting PS R1829–10”. Nature 355 (6357): 213. Bibcode1992Natur.355..213L. doi:10.1038/355213b0. 
  58. ^ Campbell, B.; Walker, G. A. H.; Yang, S. (1988). “A search for substellar companions to solar-type stars”. The Astrophysical Journal 331: 902. Bibcode1988ApJ...331..902C. doi:10.1086/166608. 
  59. ^ Lawton, A. T.; Wright, P. (1989). “A planetary system for Gamma Cephei?”. Journal of the British Interplanetary Society 42: 335–336. Bibcode1989JBIS...42..335L. 
  60. ^ Walker, G. A. H; Bohlender, D. A.; Walker, A. R.; Irwin, A. W.; Yang, S. L. S.; Larson, A. (1992). “Gamma Cephei – Rotation or planetary companion?”. Astrophysical Journal Letters 396 (2): L91–L94. Bibcode1992ApJ...396L..91W. doi:10.1086/186524. 
  61. ^ Hatzes, A. P.; Cochran, William D.; Endl, Michael; McArthur, Barbara; Paulson, Diane B.; Walker, Gordon A. H.; Campbell, Bruce; Yang, Stephenson (2003). “A Planetary Companion to Gamma Cephei A”. Astrophysical Journal 599 (2): 1383–1394. arXiv:astro-ph/0305110. Bibcode2003ApJ...599.1383H. doi:10.1086/379281. 
  62. ^ Wolszczan, A. (1994). “Confirmation of Earth Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12”. Science 264 (5158): 538-542. doi:10.1126/science.264.5158.538. PMID 17732735. https://ui.adsabs.harvard.edu/abs/1994Sci...264..538W/abstract. 
  63. ^ Holtz, Robert (1994年4月22日). “Scientists Uncover Evidence of New Planets Orbiting Star”. Los Angeles Times via The Tech Online. http://tech.mit.edu/V114/N22/psr.22w.html 
  64. ^ Podsiadlowski, P. (1993). Planet Formation Scenarios journal=Planets around pulsars; Proceedings of the Conference, California Inst. of Technology, Pasadena, Apr. 30-May 1, 1992. pp. 149-165. Bibcode1993ASPC...36..149P. 
  65. ^ Mayor, M.; Queloz, D. (1995). “A Jupiter-mass companion to a solar-type star”. Nature 378 (6555): 355–359. Bibcode1995Natur.378..355M. doi:10.1038/378355a0. 
  66. ^ Gibney, Elizabeth (18 December 2013). “In search of sister earths”. Nature 504 (7480): 361. Bibcode2013Natur.504..357.. doi:10.1038/504357a. http://www.nature.com/news/365-days-nature-s-10-1.14367. 
  67. ^ Butler et al. (1999). “Evidence for Multiple Companions to υ Andromedae”. The Astrophysical Journal 526 (2): 916?927. doi:10.1086/308035. http://www.iop.org/EJ/article/0004-637X/526/2/916/40403.html. 
  68. ^ 系外惑星の恒星面通過”. AstroArts (1999年11月25日). 2018年10月6日閲覧。
  69. ^ I. A. G. Snellen, S. Albrecht; E. J. W. de Mooij; R. S. Le Poole (2008). “Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b”. Astronomy and Astrophysics 487: 357–362. arXiv:0805.0789. Bibcode2008A&A...487..357S. doi:10.1051/0004-6361:200809762. http://www.aanda.org/index.php?option=article&access=standard&Itemid=129&url=/articles/aa/abs/2008/31/aa09762-08/aa09762-08.html. 
  70. ^ HST、太陽系外惑星に大気を発見 化学組成も調べる”. AstroArts (2001年11月29日). 2018年10月6日閲覧。
  71. ^ Sigurdsson, S. et al. (2003). “A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation”. Science 301 (5630): 193-196. doi:10.1126/science.1086326. https://ui.adsabs.harvard.edu/abs/2003Sci...301..193S/abstract. 
  72. ^ G. Chauvin; A.-M. Lagrange; C. Dumas; B. Zuckerman; D. Mouillet; I. Song; J.-L. Beuzit; P. Lowrance (2004). “A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing”. Astronomy and Astrophysics 425: L29-L32. Bibcode2004A&A...425L..29C. doi:10.1051/0004-6361:200400056. 
  73. ^ Rivera, Eugenio J.; Lissauer, Jack J.; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Fischer, Debra A.; Brown, Timothy M.; Laughlin, Gregory et al. (2005). “A ~7.5 M Planet Orbiting the Nearby Star, GJ 876”. The Astrophysical Journal 634 (1): 625–640. arXiv:astro-ph/0510508. Bibcode2005ApJ...634..625R. doi:10.1086/491669. http://iopscience.iop.org/0004-637X/634/1/625/fulltext. 
  74. ^ Sato, Bun'ei; Fischer, Debra A.; Henry, Gregory W.; Laughlin, Greg; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Bodenheimer, Peter et al. (2005). “The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core”. The Astrophysical Journal 633 (1): 465–473. arXiv:astro-ph/0507009. Bibcode2005ApJ...633..465S. doi:10.1086/449306. http://iopscience.iop.org/article/10.1086/449306/fulltext/. 
  75. ^ a b 観測成果 - 超巨大コアを持つ灼熱惑星の発見”. 国立天文台 (2005年6月30日). 2018年10月6日閲覧。
  76. ^ Beaulieu, J.-P.; Bennett, D. P.; Fouqué, P.; Williams, A.; Dominik, M.; Jørgensen, U. G.; Kubas, D.; Cassan, A. et al. (2006). “Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing”. Nature 439 (7075): 437–440. arXiv:astro-ph/0601563. Bibcode2006Natur.439..437B. doi:10.1038/nature04441. PMID 16437108. http://www.nature.com/nature/journal/v439/n7075/full/nature04441.html. 
  77. ^ Pat Brennan (2015年12月15日). “8 planets that make you think Star Wars is real”. NASA. 2018年10月6日閲覧。
  78. ^ Successful launch of the CoRoT satellite, on 27 December 2006”. COROT 2006 Events. CNES (2007年5月24日). 2018年10月6日閲覧。
  79. ^ Udry, S.; Bonfils, X.; Delfosse, X.; Forveille, T.; Mayor, M.; Perrier, C.; Bouchy, F.; Lovis, C. et al. (2007). “The HARPS search for southern extra-solar planets, XI. Super-Earths (5 and 8 M) in a 3-planet system”. Astronomy and Astrophysics 469 (3): L43–L47. arXiv:0704.3841. Bibcode2007A&A...469L..43U. doi:10.1051/0004-6361:20077612. 
  80. ^ 液体の水、そして生命が存在する可能性も―地球にとても「近い」系外惑星、発見”. AstroArts (2007年4月26日). 2018年10月6日閲覧。
  81. ^ Lightest exoplanet yet discovered”. European Southern Observatory (2009年4月21日). 2018年10月6日閲覧。
  82. ^ Paul Kalas et al. (2008). “Optical Images of an Exosolar Planet 25 Light-Years from Earth”. Science 322 (5906): 1345–1348. arXiv:0811.1994. Bibcode2008Sci...322.1345K. doi:10.1126/science.1166609. PMID 19008414. 
  83. ^ Christian Marois et al. (2008). “Direct Imaging of Multiple Planets Orbiting the Star HR 8799”. Science 322 (5906): 1348. Bibcode2008Sci...322.1348M. doi:10.1126/science.1166585. 
  84. ^ フォーマルハウトb、惑星ではない?”. ナショナルジオグラフィック (2012年1月31日). 2018年10月6日閲覧。
  85. ^ A. Léger (2009). “Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius”. Astronomy and Astrophysics 506: 287-302. arXiv:0908.0241. Bibcode2009A&A...506..287L. doi:10.1051/0004-6361/200911933. http://www.aanda.org/articles/aa/pdf/2009/40/aa11933-09.pdf. 
  86. ^ COROT discovers smallest exoplanet yet, with a surface to walk on”. ESA (2009年2月3日). 2018年10月6日閲覧。
  87. ^ NASAの系外惑星探査衛星ケプラー、打ち上げ成功”. AstroArts (2009年3月9日). 2018年10月6日閲覧。
  88. ^ Let the Planet Hunt begin”. NASA (2009年5月13日). 2018年10月6日閲覧。
  89. ^ Rich Talcott (2010年1月5日). “215th AAS meeting update:Kepler discoveries the talk of the town”. Astronomy.com. Astronomy Magazine. 2018年10月6日閲覧。
  90. ^ タイトな連星系でも惑星形成の可能性”. ナショナルジオグラフィック (2009年6月12日). 2023年11月30日閲覧。
  91. ^ Planet-Hunting Method Succeeds at Last”. NASA (2009年5月28日). 2018年10月6日閲覧。
  92. ^ Bean, Jacob L.; Seifahrt, Andreas; Hartman, Henrik; Nilsson, Hampus; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J.; Wiedemann, Günter (2010). “The Proposed Giant Planet Orbiting VB 10 Does Not Exist”. The Astrophysical Journal 711 (1): L19-L23. doi:10.1088/2041-8205/711/1/L19. ISSN 2041-8205. 
  93. ^ Anderson, D. R.; Hellier, C.; Gillon, M.; Triaud, A. H. M. J.; Smalley, B.; Hebb, L.; Collier Cameron, A.; Maxted, P. F. L. et al. (2010). “WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit”. The Astrophysical Journal 709 (1): 159–167. arXiv:0908.1553. Bibcode2010ApJ...709..159A. doi:10.1088/0004-637X/709/1/159. http://iopscience.iop.org/0004-637X/709/1/159/fulltext/. 
  94. ^ Lisa Grossman (2009年8月13日). “Second backwards planet found, a day after the first”. NewScientist. http://www.newscientist.com/article/dn17613-second-backwards-planet-found-a-day-after-the-first.html 2018年10月6日閲覧。 
  95. ^ すばる望遠鏡、主星の自転に逆行する太陽系外惑星を発見(国立天文台ハワイ観測所公式ページ、2009年11月4日掲載)
  96. ^ Charbonneau, David; Berta, Zachory K.; Irwin, Jonathan; Burke, Christopher J.; Nutzman, Philip; Buchhave, Lars A.; Lovis, Christophe; Bonfils, Xavier et al. (2009). “A super-Earth transiting a nearby low-mass star”. Nature 462 (7275): 891–894. arXiv:0912.3229. Bibcode2009Natur.462..891C. doi:10.1038/nature08679. PMID 20016595. 
  97. ^ Hubble reveals a new class of extrasolar planet”. spacetelescope.org. The Hubble European Space Agency Information Centre (2012年2月23日). 2018年10月6日閲覧。
  98. ^ Vogt, Steven S.; Butler, R. Paul; Rivera, Eugenio J.; Haghighipour, Nader; Henry, Gregory W.; Williamson, Michael H. (29 September 2010). "The Lick-Carnegie Exoplanet Survey: A 3.1 M_Earth Planet in the Habitable Zone of the Nearby M3V Star Gliese 581". arXiv:1009.5733v1 [astro-ph.EP]。
  99. ^ もっとも生命に適した系外惑星を発見 グリーゼ581g”. AstroArts (2010年10月1日). 2018年10月6日閲覧。
  100. ^ グリーゼ581の系外惑星は幻だった”. ナショナルジオグラフィック (2014年7月4日). 2018年10月6日閲覧。
  101. ^ NASA Finds Earth-size Planet Candidates in Habitable Zone, Six Planet System”. NASA (2011年2月3日). 2018年10月6日閲覧。
  102. ^ NASA's Kepler Releases New Catalog- 2,321 Planet Candidates”. NASA (2012年3月3日). 2018年10月6日閲覧。
  103. ^ Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier (2012). “A Possible Carbon-rich Interior in Super-Earth 55 Cancri e”. The Astrophysical Journal Letters 759 (2): L40. arXiv:1210.2720. Bibcode2012ApJ...759L..40M. doi:10.1088/2041-8205/759/2/L40. 
  104. ^ a b ダイヤモンドでできた惑星を発見”. ナショナルジオグラフィック (2012年10月12日). 2018年10月6日閲覧。
  105. ^ Dumusque, X.; Pepe, F.; Lovis, C.; Ségransan, D.; Sahlmann, J.; Benz, W.; Bouchy, F.; Mayor, M. et al. (2012). “An Earth mass planet orbiting Alpha Centauri B”. Nature 490 (7423): 207–211. Bibcode2012Natur.491..207D. doi:10.1038/nature11572. PMID 23075844. https://www.eso.org/public/archives/releases/sciencepapers/eso1241/eso1241a.pdf. 
  106. ^ Planet Found in Nearest Star System to Earth”. European Southern Observatory (2012年10月16日). 2018年10月6日閲覧。
  107. ^ Planet Found in Alpha Centauri System”. Sky and Telescope (2012年10月17日). 2018年10月6日閲覧。
  108. ^ Rajpaul, Vinesh (2015). “Ghost in the time series: no planet for Alpha Cen B”. Monthly Notices of the Royal Astronomical Society: Letters 456: L6–L10. arXiv:1510.05598. Bibcode2016MNRAS.456L...6R. doi:10.1093/mnrasl/slv164. 
  109. ^ 太陽系から最も近い太陽系外惑星が消えた!”. ナショナルジオグラフィック (2015年11月4日). 2018年10月6日閲覧。
  110. ^ ハビタブルゾーンに地球の1.4倍の惑星”. AstroArts (2013年4月19日). 2018年10月6日閲覧。
  111. ^ a b NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds”. NASA (2014年2月26日). 2018年10月6日閲覧。
  112. ^ Wall, Mike (2014年2月26日). “Population of Known Alien Planets Nearly Doubles as NASA Discovers 715 New Worlds”. Space.com. 2018年10月6日閲覧。
  113. ^ Jonathan Amos (2014年2月26日). “Kepler telescope bags huge haul of planets”. BBC News. https://www.bbc.co.uk/news/science-environment-26362433 2018年10月6日閲覧。 
  114. ^ 715個の系外惑星が一気に確定”. AstroArts (2014年2月27日). 2018年10月6日閲覧。
  115. ^ NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones”. NASA (2015年1月6日). 2018年10月6日閲覧。
  116. ^ Jenkins, Jon M.; Twicken, Joseph D.; Batalha, Natalie M.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Latham, David W.; Esquerdo, Gilbert A. et al. (2015). “Discovery and Validation of Kepler-452b: A 1.6 R⨁ Super Earth Exoplanet in the Habitable Zone of a G2 Star”. The Astronomical Journal 150 (2): 56. arXiv:1507.06723. Bibcode2015AJ....150...56J. doi:10.1088/0004-6256/150/2/56. ISSN 1538-3881. http://www.nasa.gov/sites/default/files/atoms/files/ms-r1b.pdf. 
  117. ^ NASA's Kepler Mission Announces Largest Collection of Planets Ever Discovered”. NASA (2016年5月11日). 2018年10月6日閲覧。
  118. ^ Planet Found in Habitable Zone Around Nearest Star”. European Southern Observatory (2016年8月24日). 2018年10月6日閲覧。
  119. ^ Chang, Kenneth (2016年8月24日). “One Star Over, a Planet That Might Be Another Earth”. New York Times. http://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html 2018年10月6日閲覧。 
  120. ^ Discovery of potentially Earth-like planet Proxima b raises hopes for life”. The Guardian (2016年8月24日). 2018年10月6日閲覧。
  121. ^ 系外惑星プロキシマケンタウリbの宇宙天気予報”. AstroArts (2017年4月7日). 2018年10月6日閲覧。
  122. ^ NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star”. NASA (2017年2月23日). 2018年10月6日閲覧。
  123. ^ Gillon, Michaël et al. (2017). “Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1”. Nature 542 (7642): 456-460. arXiv:1703.01424. Bibcode2017Natur.542..456G. doi:10.1038/nature21360. ISSN 0028-0836. 
  124. ^ “TRAPPIST-1 Planets Probably Rich in Water First glimpse of what Earth-sized exoplanets are made of”. European Southern Observatory. (2018年2月5日). https://www.eso.org/public/news/eso1805 2018年10月6日閲覧。 
  125. ^ Xavier Bonfils; et al. (16 November 2017). "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". arXiv:1711.06177v1 [astro-ph.EP]。
  126. ^ 生命が存在できそうな一番近い系外惑星が見つかる”. ナショナルジオグラフィック (2017年11月16日). 2018年10月6日閲覧。
  127. ^ Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star”. NASA Jet Propulsion Laboratory (2017年12月14日). 2018年10月6日閲覧。
  128. ^ AIで新たな系外惑星を発見”. AstroArts (2017年12月19日). 2018年10月6日閲覧。
  129. ^ H. R. Wakeford et al. (2017). “The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint”. The Astronomical Journal 155 (1): 14. arXiv:1711.10529. Bibcode2018AJ....155...29W. doi:10.3847/1538-3881/aa9e4e. http://iopscience.iop.org/article/10.3847/1538-3881/aa9e4e. 
  130. ^ NASA's TESS Satellite Launches to Seek Out New Alien Worlds”. Space.com (2018年4月18日). 2018年10月6日閲覧。
  131. ^ Huang, Chelsea X.; et al. (2018). "TESS Discovery of a Transiting Super-Earth in the π Mensae System". arXiv:1809.05967v1 [astro-ph.EP]。
  132. ^ J. J. Spake et al. (2018). “Helium in the eroding atmosphere of an exoplanet”. Nature 557: 68-70. arXiv:1805.01298. Bibcode2018arXiv180501298S. doi:10.1038/s41586-018-0067-5. http://www.nature.com/articles/s41586-018-0067-5. 
  133. ^ NASA Retires Kepler Space Telescope, Passes Planet-Hunting Torch”. NASA (2018年10月31日). 2018年12月1日閲覧。
  134. ^ Kepler Space Telescope Bid ‘Goodnight’ With Final Set of Commands”. NASA (2018年11月17日). 2018年12月1日閲覧。
  135. ^ Ribas, I. et al. (2018). “A candidate super-Earth planet orbiting near the snow line of Barnard’s star”. Nature 563 (7731): 365-368. arXiv:1811.05955. Bibcode2018arXiv181105955R. doi:10.1038/s41586-018-0677-y. ISSN 0028-0836. 
  136. ^ 宇宙と地上の望遠鏡の連携で100個を超える系外惑星を発見”. 国立天文台 (2018年11月26日). 2018年12月1日閲覧。
  137. ^ Zechmeister, M.; Dreizler, S.; Ribas, I.; Reiners, A.; Caballero, J. A. (2019). “The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star”. Astronomy and Astrophysics. arXiv:1906.07196. Bibcode2019arXiv190607196Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. 
  138. ^ Gilbert, Emily A.; Barclay, Thomas; Schlieder, Joshua E.; et al. "The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System". arXiv:2001.00952v1 [astro-ph.EP]。
  139. ^ Johnson, Michele (2017年6月9日). “Media Invited to NASA’s Kepler Science Conference”. NASA. 2018年10月6日閲覧。
  140. ^ NASA's Exoplanet Archive KOI table”. NASA. 2018年10月6日閲覧。
  141. ^ Lewin, Sarah (2017年6月19日). “NASA's Kepler Space Telescope Finds Hundreds of New Exoplanets, Boosts Total to 4,034”. NASA. 2018年10月6日閲覧。
  142. ^ Overbye, Dennis (2017年6月19日). “Earth-Size Planets Among Final Tally of NASA’s Kepler Telescope”. The New York Times. https://www.nytimes.com/2017/06/19/science/kepler-planets-earth-like-census.html 2018年10月6日閲覧。 
  143. ^ Exoplanet Anniversary: From Zero to Thousands in 20 Years. NASA News, 6 October 2015.
  144. ^ a b Charbonneau, David (2008). “The Era of Comparative Exoplanetology”. American Astronomical Society. AAS Meeting #212, #54.01; Bulletin of the American Astronomical Society 40: 250. Bibcode2008AAS...212.5401C. https://ui.adsabs.harvard.edu/abs/2008AAS...212.5401C/abstract. 
  145. ^ a b Desert, Jean-Michel; Deming, Drake; Knutson, Heather; Bean, Jacob; Fortney, Jonathan; Burrows, Adam; Showman, Adam. “New Frontiers for Comparative Exoplanetology In the Era of Kepler”. Spitzer Proposal ID 90092. Bibcode2012sptz.prop90092D. 
  146. ^ Kraus, Adam L.; Ireland, Michael J. (2012). “LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?”. The Astrophysical Journal 745 (1): 5. arXiv:1110.3808. Bibcode2012ApJ...745....5K. doi:10.1088/0004-637X/745/1/5. 
  147. ^ a b c d Ollivier, Marc; Maurel, Marie-Christine (2014). “Planetary Environments and Origins of Life: How to reinvent the study of Origins of Life on the Earth and Life in the”. BIO Web of Conferences 2 2: 1. doi:10.1051/bioconf/20140200001. https://makeref.toolforge.org/. 
  148. ^ Madhusudhan, Nikku; Agúndez, Marcelino; Moses, Julianne I.; Hu, Yongyun (2016). “Exoplanetary Atmospheres – Chemistry, Formation Conditions, and Habitability”. Space Science Reviews 205 (1): 285–348. arXiv:1604.06092. Bibcode2016SSRv..205..285M. doi:10.1007/s11214-016-0254-3. PMC 5207327. PMID 28057962. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207327/. 
  149. ^ ALMA Discovers Trio of Infant Planets around Newborn Star – Novel technique to find youngest planets in our galaxy”. ESO. 2018年10月6日閲覧。
  150. ^ ナショナルジオグラフィック:“逆向き”に公転する太陽系外惑星
  151. ^ すばる望遠鏡が解き明かす逆行惑星の成り立ち
  152. ^ a b ナショナルジオグラフィック:最も地球に似た系外惑星はスーパーイオ
  153. ^ Mamajek, Eric E. (2009). “Initial Conditions of Planet Formation: Lifetimes of Primordial Disks”. Exoplanets and Disks: Their Formation and Diversity: Proceedings of the International Conference, AIP Conference Proceedings 1158: 3-10. arXiv:0906.5011. Bibcode2009AIPC.1158....3M. doi:10.1063/1.3215910. 
  154. ^ Rice, W. K. M.; Armitage, P. J. (2003). “On the Formation Timescale and Core Masses of Gas Giant Planets”. The Astrophysical Journal 598: L55–L58. arXiv:astro-ph/0310191. Bibcode2003ApJ...598L..55R. doi:10.1086/380390. 
  155. ^ Yin, Q.; Jacobsen, S. B.; Yamashita, K.; Blichert-Toft, J.; Télouk, P.; Albarède, F. (2002). “A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites”. Nature 418 (6901): 949–952. Bibcode2002Natur.418..949Y. doi:10.1038/nature00995. PMID 12198540. 
  156. ^ Calvet, Nuria; D'Alessio, Paola; Hartmann, Lee; Wilner, David; Walsh, Andrew; Sitko, Michael (2001). “Evidence for a developing gap in a 10 Myr old protoplanetary disk”. The Astrophysical Journal 568 (2): 1008–1016. arXiv:astro-ph/0201425. Bibcode2002ApJ...568.1008C. doi:10.1086/339061. 
  157. ^ Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki et al. (28 April 2017). “EPIC210894022b −A short period super-Earth transiting a metal poor, evolved old star”. Astronomy and Astrophysics. arXiv:1704.08284. 
  158. ^ Lammer, H.; Stokl, A.; Erkaev, N. V.; Dorfi, E. A.; Odert, P.; Gudel, M.; Kulikov, Y. N.; Kislyakova, K. G. et al. (2014). “Origin and loss of nebula-captured hydrogen envelopes from 'sub'- to 'super-Earths' in the habitable zone of Sun-like stars”. Monthly Notices of the Royal Astronomical Society 439 (4): 3225–3238. arXiv:1401.2765. Bibcode2014MNRAS.439.3225L. doi:10.1093/mnras/stu085. https://www.researchgate.net/publication/260647400_Origin_and_Loss_of_nebula-captured_hydrogen_envelopes_from_sub-_to_super-Earths_in_the_habitable_zone_of_Sun-like_stars. 
  159. ^ Johnson, R. E. (2010). “Thermally-Diven Atmospheric Escape”. The Astrophysical Journal 716 (2): 1573–1578. arXiv:1001.0917. Bibcode2010ApJ...716.1573J. doi:10.1088/0004-637X/716/2/1573. 
  160. ^ Zendejas, J.; Segura, A.; Raga, A.C. (2010). “Atmospheric mass loss by stellar wind from planets around main sequence M stars”. Icarus 210 (2): 539–544. arXiv:1006.0021. Bibcode2010Icar..210..539Z. doi:10.1016/j.icarus.2010.07.013. 
  161. ^ Masuda, K. (2014). “Very Low Density Planets Around Kepler-51 Revealed with Transit Timing Variations and an Anomaly Similar to a Planet-Planet Eclipse Event”. The Astrophysical Journal 783: 53. arXiv:1401.2885. Bibcode2014ApJ...783...53M. doi:10.1088/0004-637X/783/1/53. 
  162. ^ Artist’s impression of exoplanet orbiting two stars”. www.spacetelescope.org. 2018年10月6日閲覧。
  163. ^ Petigura, E. A.; Howard, A. W.; Marcy, G. W. (2013). “Prevalence of Earth-size planets orbiting Sun-like stars”. Proceedings of the National Academy of Sciences 110 (48): 19273–19278. arXiv:1311.6806. Bibcode2013PNAS..11019273P. doi:10.1073/pnas.1319909110. PMC 3845182. PMID 24191033. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845182/. 
  164. ^ Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Wright, Jason T.; Fischer, Debra A. (2008). “The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets”. Publications of the Astronomical Society of the Pacific 120 (867): 531–554. arXiv:0803.3357. Bibcode2008PASP..120..531C. doi:10.1086/588487. 
  165. ^ Bonfils, X.; Forveille, T.; Delfosse, X.; Udry, S.; Mayor, M.; Perrier, C.; Bouchy, F.; Pepe, F. et al. (2005). “The HARPS search for southern extra-solar planets”. Astronomy and Astrophysics 443 (3): L15–L18. arXiv:astro-ph/0509211. Bibcode2005A&A...443L..15B. doi:10.1051/0004-6361:200500193. 
  166. ^ Wang, J.; Fischer, D. A. (2014). “Revealing a Universal Planet–Metallicity Correlation for Planets of Different Solar-Type Stars”. The Astronomical Journal 149: 14. arXiv:1310.7830. Bibcode2015AJ....149...14W. doi:10.1088/0004-6256/149/1/14. 
  167. ^ Schwarz, Richard. Binary Catalogue of Exoplanets. Universität Wien
  168. ^ Schwarz, Richard. STAR-DATA. Universität Wien
  169. ^ Megan E. Schwamb et al. (2013). “Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System”. The Astrophysical Journal 768 (2): 21. arXiv:1210.3612. Bibcode2013ApJ...768..127S. doi:10.1088/0004-637X/768/2/127. http://iopscience.iop.org/article/10.1088/0004-637X/768/2/127/meta. 
  170. ^ Lewis C. Roberts Jr.; Andrei Tokovinin; Brian D. Mason; Reed L. Riddle; William I. Hartkopf; Nicholas M. Law; Christoph Baranec (2015). “Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars”. The Astrophysical Journal 149 (4): 7. arXiv:1503.01211. Bibcode2015AJ....149..118R. doi:10.1088/0004-6256/149/4/118. http://iopscience.iop.org/article/10.1088/0004-6256/149/4/118/meta. 
  171. ^ NASA Hubble Finds a True Blue Planet. NASA. 11 July 2013
  172. ^ Evans, T. M.; Pont, F. D. R.; Sing, D. K.; Aigrain, S.; Barstow, J. K.; Désert, J. M.; Gibson, N.; Heng, K. et al. (2013). “The Deep Blue Color of HD189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths”. 00The Astrophysical Journal 772 (2): L16. arXiv:1307.3239. Bibcode2013ApJ...772L..16E. doi:10.1088/2041-8205/772/2/L16. 
  173. ^ Kuzuhara, M. 7et al. (2013). “Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504” (Full text). The Astrophysical Journal 774 (11): 11. arXiv:1307.2886. Bibcode2013ApJ...774...11K. doi:10.1088/0004-637X/774/1/11. https://pure.uva.nl/ws/files/2002826/150064_Direct_Imaging_of_a_Cold_Jovian_Exoplanet.pdf. 
  174. ^ Carson; Thalmann; Janson; Kozakis; Bonnefoy; Biller; Schlieder; Currie et al. (15 November 2012). “Direct Imaging Discovery of a 'Super-Jupiter' Around the late B-Type Star Kappa And”. The Astrophysical Journal 763 (2): L32. arXiv:1211.3744. Bibcode2013ApJ...763L..32C. doi:10.1088/2041-8205/763/2/L32. 
  175. ^ Abel Mendez (2012年6月30日). “The Apparent Brightness and Size of Exoplanets and their Stars”. Planetary Habitability Laboratory. 2018年10月6日閲覧。
  176. ^ Coal-Black Alien Planet Is Darkest Ever Seen”. Space.com. 2018年10月6日閲覧。
  177. ^ Kipping, David M.; Spiegel, David S. (2011). “Detection of visible light from the darkest world”. Monthly Notices of the Royal Astronomical Society: Letters 417: L88–L92. arXiv:1108.2297. Bibcode2011MNRAS.417L..88K. doi:10.1111/j.1745-3933.2011.01127.x. 
  178. ^ Barclay, T.; Huber, D.; Rowe, J. F.; Fortney, J. J.; Morley, C. V.; Quintana, E. V.; Fabrycky, D. C.; Barentsen, G. et al. (2012). “Photometrically derived masses and radii of the planet and star in the TrES-2 system”. The Astrophysical Journal 761: 53. arXiv:1210.4592. Bibcode2012ApJ...761...53B. doi:10.1088/0004-637X/761/1/53. 
  179. ^ a b c Burrows, Adam (2014). "Scientific Return of Coronagraphic Exoplanet Imaging and Spectroscopy Using WFIRST". arXiv:1412.6097 [astro-ph.EP]。
  180. ^ ORBITAL ECCENTRICITES”. exoplanets.org (2003年9月20日). 2018年10月6日閲覧。
  181. ^ Ward, Peter; Brownlee, Donald (2000). Rare Earth: Why Complex Life is Uncommon in the Universe. Springer. pp. 122–123. ISBN 0-387-98701-0 
  182. ^ Limbach, M. A.; Turner, E. L.. “Exoplanet orbital eccentricity: multiplicity relation and the Solar System”. Proc Natl Acad Sci U S A 112: 20–24. arXiv:1404.2552. Bibcode2015PNAS..112...20L. doi:10.1073/pnas.1406545111. PMC 4291657. PMID 25512527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291657/. 
  183. ^ Steward Observatory, University of Arizona, Tucson, Planetesimals in Debris Disks, by Andrew N. Youdin and George H. Rieke, 2015
  184. ^ Anglada-Escudé, Guillem; Mikko Tuomi (2012). A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems. arXiv:1206.7118. Bibcode2012arXiv1206.7118A. 
  185. ^ Unlocking the Secrets of an Alien World's Magnetic Field, Space.com, by Charles Q. Choi, 20 November 2014
  186. ^ Kislyakova, K. G.; Holmstrom, M.; Lammer, H.; Odert, P.; Khodachenko, M. L. (2014). “Magnetic moment and plasma environment of HD 209458b as determined from Ly observations”. Science 346 (6212): 981–984. arXiv:1411.6875. Bibcode2014Sci...346..981K. doi:10.1126/science.1257829. PMID 25414310. 
  187. ^ Footprint of a Magnetic Exoplanet, www.skyandtelescope.com, 9 January 2004, Robert Naeye
  188. ^ Nichols, J. D. (2011). “Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: Implications for detectability of auroral radio emissions”. Monthly Notices of the Royal Astronomical Society 414 (3): 2125–2138. arXiv:1102.2737. Bibcode2011MNRAS.414.2125N. doi:10.1111/j.1365-2966.2011.18528.x. 
  189. ^ Radio Telescopes Could Help Find Exoplanets”. RedOrbit (2011年4月18日). 2018年10月6日閲覧。
  190. ^ Radio Detection of Extrasolar Planets: Present and Future Prospects” (PDF). NRL, NASA/GSFC, NRAO, Observatoìre de Paris. 2018年10月6日閲覧。
  191. ^ Kean, Sam (2016). “Forbidden plants, forbidden chemistry”. Distillations 2 (2): 5. https://www.sciencehistory.org/distillations/magazine/forbidden-planet-forbidden-chemistry 2018年10月6日閲覧。. 
  192. ^ Charles Q. Choi (2012年11月22日). “Super-Earths Get Magnetic 'Shield' from Liquid Metal”. Space.com. 2018年10月6日閲覧。
  193. ^ Buzasi, D. (2013). “Stellar Magnetic Fields As a Heating Source for Extrasolar Giant Planets”. The Astrophysical Journal 765 (2): L25. arXiv:1302.1466. Bibcode2013ApJ...765L..25B. doi:10.1088/2041-8205/765/2/L25. 
  194. ^ Chang, Kenneth (2018年8月16日). “Settling Arguments About Hydrogen With 168 Giant Lasers - Scientists at Lawrence Livermore National Laboratory said they were "converging on the truth" in an experiment to understand hydrogen in its liquid metallic state.”. The New York Times. https://www.nytimes.com/2018/08/16/science/metallic-hydrogen-lasers.html 2018年10月6日閲覧。 
  195. ^ Staff (2018-08-16). “Under pressure, hydrogen offers a reflection of giant planet interiors - Hydrogen is the most-abundant element in the universe and the simplest, but that simplicity is deceptive”. Science Daily. https://www.sciencedaily.com/releases/2018/08/180816143205.htm. 
  196. ^ Valencia, Diana; O'Connell, Richard J. (2009). “Convection scaling and subduction on Earth and super-Earths”. Earth and Planetary Science Letters 286 (3–4): 492–502. Bibcode2009E&PSL.286..492V. doi:10.1016/j.epsl.2009.07.015. 
  197. ^ Van Heck, H.J.; Tackley, P.J. (2011). “Plate tectonics on super-Earths: Equally or more likely than on Earth”. Earth and Planetary Science Letters 310 (3–4): 252–261. Bibcode2011E&PSL.310..252V. doi:10.1016/j.epsl.2011.07.029. 
  198. ^ O'Neill, C.; Lenardic, A. (2007). “Geological consequences of super-sized Earths”. Geophysical Research Letters 34 (19): L19204. Bibcode2007GeoRL..3419204O. doi:10.1029/2007GL030598. 
  199. ^ Valencia, Diana; O'Connell, Richard J.; Sasselov, Dimitar D. (2007). “Inevitability of Plate Tectonics on Super-Earths”. Astrophysical Journal Letters 670 (1): L45–L48. arXiv:0710.0699. Bibcode2007ApJ...670L..45V. doi:10.1086/524012. 
  200. ^ Super Earths Likely To Have Both Oceans and Continents”. astrobiology.com (2014年1月7日). 2018年10月6日閲覧。
  201. ^ Cowan, N. B.; Abbot, D. S. (2014). “Water Cycling Between Ocean and Mantle: Super-Earths Need Not Be Waterworlds”. The Astrophysical Journal 781: 27. arXiv:1401.0720. Bibcode2014ApJ...781...27C. doi:10.1088/0004-637X/781/1/27. 
  202. ^ Michael D. Lemonick (2015年5月6日). “Astronomers May Have Found Volcanoes 40 Light-Years From Earth”. National Geographic. 2018年10月6日閲覧。
  203. ^ Demory, Brice-Olivier; Gillon, Michael; Madhusudhan, Nikku; Queloz, Didier (2015). “Variability in the super-Earth 55 Cnc e”. Monthly Notices of the Royal Astronomical Society 455 (2): 2018–2027. arXiv:1505.00269. Bibcode2016MNRAS.455.2018D. doi:10.1093/mnras/stv2239. 
  204. ^ Scientists Discover a Saturn-like Ring System Eclipsing a Sun-like Star”. Space Daily (2012年1月13日). 2018年10月6日閲覧。
  205. ^ Mamajek, E. E.; Quillen, A. C.; Pecaut, M. J.; Moolekamp, F.; Scott, E. L.; Kenworthy, M. A.; Cameron, A. C.; Parley, N. R. (2012). “Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-Like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks”. The Astronomical Journal 143 (3): 72. arXiv:1108.4070. Bibcode2012AJ....143...72M. doi:10.1088/0004-6256/143/3/72. 
  206. ^ Kalas, P.; Graham, J. R.; Chiang, E.; Fitzgerald, M. P.; Clampin, M.; Kite, E. S.; Stapelfeldt, K.; Marois, C. et al. (2008). “Optical Images of an Exosolar Planet 25 Light-Years from Earth”. Science 322 (5906): 1345–1348. arXiv:0811.1994. Bibcode2008Sci...322.1345K. doi:10.1126/science.1166609. PMID 19008414. 
  207. ^ Schlichting, Hilke E.; Chang, Philip (2011). “Warm Saturns: On the Nature of Rings around Extrasolar Planets That Reside inside the Ice Line”. The Astrophysical Journal 734 (2): 117. arXiv:1104.3863. Bibcode2011ApJ...734..117S. doi:10.1088/0004-637X/734/2/117. 
  208. ^ Bennett, D. P. et al. (2013). “MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant or a high-velocity planetary system in the galactic bulge”. The Astrophysical Journal 785 (2): 155. arXiv:1312.3951. Bibcode2014ApJ...785..155B. doi:10.1088/0004-637X/785/2/155. 
  209. ^ Teachey, Alex; Kipping, David M.; Schmitt, Allan R. (2018). “HEK VI: On the Dearth of Galilean Analogs in Kepler and the Exomoon Candidate Kepler-1625b I”. The Astronomical Journal 155 (1): 36. arXiv:1707.08563. Bibcode2018AJ....155...36T. doi:10.3847/1538-3881/aa93f2. 
  210. ^ Teachey, Alex; Kipping, David M. (2018-10-01). “Evidence for a large exomoon orbiting Kepler-1625b” (英語). Science Advances 4 (10): eaav1784. doi:10.1126/sciadv.aav1784. ISSN 2375-2548. http://advances.sciencemag.org/content/4/10/eaav1784. 
  211. ^ Cloudy versus clear atmospheres on two exoplanets”. Spacetelescope.org (2017年6月6日). 2018年10月6日閲覧。
  212. ^ Charbonneau, David (2002). “Detection of an Extrasolar Planet Atmosphere”. The Astrophysical Journal 568 (1): 377–384. arXiv:astro-ph/0111544. Bibcode2002ApJ...568..377C. doi:10.1086/338770. 
  213. ^ Evaporating exoplanet stirs up dust”. Phys.org (2012年8月28日). 2018年10月6日閲覧。
  214. ^ Woollacott, Emma (18 May 2012) New-found exoplanet is evaporating away. TG Daily
  215. ^ Bhanoo, Sindya N. (2015年6月25日). “A Planet with a Tail Nine Million Miles Long”. The New York Times. https://www.nytimes.com/interactive/projects/cp/summer-of-science-2015/latest/exoplanet-tail 2018年10月6日閲覧。 
  216. ^ St. Fleur, Nicholas (2017年5月19日). “Spotting Mysterious Twinkles on Earth From a Million Miles Away”. The New York Times. https://www.nytimes.com/2017/05/19/science/dscovr-satellite-ice-glints-earth-atmosphere.html 2018年10月6日閲覧。 
  217. ^ Marshak, Alexander; Várnai, Tamás; Kostinski, Alexander (2017). “Terrestrial glint seen from deep space: oriented ice crystals detected from the Lagrangian point”. Geophysical Research Letters 44 (10): 5197–5202. Bibcode2017GeoRL..44.5197M. doi:10.1002/2017GL073248. 
  218. ^ Forget "Earth-Like"—We'll First Find Aliens on Eyeball Planets, Nautilus, Posted by Sean Raymond on 20 February 2015
  219. ^ Eyeball earths”. Phys.org (2013年5月3日). 2018年10月6日閲覧。
  220. ^ Dobrovolskis, Anthony R. (2015). “Insolation patterns on eccentric exoplanets”. Icarus 250: 395–399. Bibcode2015Icar..250..395D. doi:10.1016/j.icarus.2014.12.017. 
  221. ^ Tony Dobrovolskis (2014年3月18日). “Patterns of Sunlight on Extra-Solar Planets”. SETI Institute. 2018年10月6日閲覧。
  222. ^ “Oxygen Is Not Definitive Evidence of Life on Extrasolar Planets”. NAOJ. (2015年9月10日). http://astrobiology.com/2015/09/oxygen-is-not-definitive-evidence-of-life-on-extrasolar-planets.html 2018年10月6日閲覧。 
  223. ^ Kopparapu, Ravi Kumar (2013). “A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around kepler m-dwarf”. The Astrophysical Journal Letters 767 (1): L8. arXiv:1303.2649. Bibcode2013ApJ...767L...8K. doi:10.1088/2041-8205/767/1/L8. 
  224. ^ Cruz, Maria; Coontz, Robert (2013). “Exoplanets - Introduction to Special Issue”. Science 340 (6132): 565. doi:10.1126/science.340.6132.565. http://www.sciencemag.org/content/340/6132/565. 



太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/26 06:35 UTC 版)

COROT」の記事における「太陽系外惑星」の解説

COROT は太陽系外惑星を発見するためにトランジット法使用する惑星などの天体恒星観測者の間を通過し恒星からの光の一部遮られる現象通過 (トランジット) である。この現象は、光の流束の非常に小さ変化検出できる感度を持つ CCD によって検出可能となる。COROT10,000分の1の明るさ変化検出する能力持っている。そのため科学者たちは、地球の2倍程度大きさを持つ、スーパー・アース呼ばれる種類惑星発見できるだろうと見込んでいた。後に地球の1.7倍の大きさを持つ CoRoT-7b検出され、この予測正しかったことが証明された。 COROT32秒ごとに32秒間露光を行うが、データ量大きすぎるため地球には全ての画像送信されない。衛星搭載されコンピューターによってデータ処理が行われる。COROT系外惑星チームによって事前に選定され視野中の対象星は特定のマスクによって記述され特定数のピクセルによって定義され、そのマスク内の全てのピクセルデータ合計され、さらに複数回の露光得られデータ合計される (通常16回分で、合計積分時間はおよそ8分 (512秒) になる)。その後処理されデータ地上へ送信される。ただし特に興味深い対象だと考えられる恒星については、各露光得られデータ32秒ごとに送信されるこのような32もしくは512秒のデータサンプリングは、1時間弱から数時間程度継続する惑星トランジット検出するのに非常に適している。 この手法の特徴は、観測対象本格的な系外惑星候補存在するとみなすまでに、2つ等し時間間隔持った3回連続するトランジット検出が必要とされるという点である。ある軌道周期 T {\displaystyle T} を持つ惑星は、3回トランジット検出されるためには少なくとも 2 T {\displaystyle 2T} 〜 3 T {\displaystyle 3T} の時間間隔観測される必要がある惑星軌道長半径 a {\displaystyle a} と恒星質量 M s t a r {\displaystyle M_{\rm {star}}} は、軌道長半径単位天文単位恒星質量の単位太陽質量軌道周期単位を年とした場合、 a 3 = T 2 M s t a r {\displaystyle a^{3}=T^{2}M_{\rm {star}}} で表される。このことから、例え観測期間が1年未満場合検出可能な惑星軌道地球軌道よりも著しく小さものになることが示唆される。そのため COROT による観測では、各観測領域における最大観測継続時間が6ヶ月であることから、検出可能な系外惑星軌道長半径は 0.3 au よりも小さい (太陽水星の距離よりも短い) ものになる。そのため、いわゆるハビタブル惑星検出できないNASA打ち上げたケプラーは同じ領域何年にも渡って観測するため、恒星から離れた距離にある地球サイズの惑星検出する能力がある。 COROT によって発見され系外惑星の数はあまり多くはないが (6年間の運用中32個を発見)、これは惑星存在確定させるためには必ず地上望遠鏡による確認が必要であることが要因である。実際に大部分ケースでは、数回トランジット検出だけでは惑星検出とはみなされず、一方がもう片方かすめるように掩蔽する食連星によるトランジット状のシグナルである場合や、COROT対象星に非常に近い位置連星があるためトランジット効果薄められている場合である可能性がある。どちらの場合も、惑星恒星の手前を通過することによる減光同じくらいの小さな減光引き起こす。これらの可能性排除するため、地上望遠鏡用いた分光観測による視線速度測定と、CCD カメラでの撮像観測を行う。前者では連星系質量直ち検出することができ、後者では観測対象星の近くトランジット状のシグナル発生させうる連星同定することができる。明るさ相対的な低下は、COROT による測定する範囲定義した特定のマスク内の全ての光を合計したものよりも大きくなるその結果として COROT系外惑星科学チームは、確認され完全に特徴付けられ惑星のみを公表し単なる系外惑星候補リスト公開されていない。この戦略は、系外惑星候補リスト定期的に更新され一般公開されているケプラーミッションのものとは異なる。

※この「太陽系外惑星」の解説は、「COROT」の解説の一部です。
「太陽系外惑星」を含む「COROT」の記事については、「COROT」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/02/15 05:56 UTC 版)

古在メカニズム」の記事における「太陽系外惑星」の解説

詳細は「ホット・ジュピター」を参照 太陽系外惑星の中には恒星に非常に近い軌道公転する巨大ガス惑星であるホット・ジュピター呼ばれる天体がある。このような惑星初め恒星より遠方形成された後、古在機構潮汐摩擦組み合わせによって現在の軌道にまで移動することで形成されたとする説が提唱されている。

※この「太陽系外惑星」の解説は、「古在メカニズム」の解説の一部です。
「太陽系外惑星」を含む「古在メカニズム」の記事については、「古在メカニズム」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/30 10:14 UTC 版)

宇宙移民」の記事における「太陽系外惑星」の解説

「太陽系外惑星」および「居住するのに適した太陽系外惑星の一覧」も参照 SF作品においては人類太陽系飛び出し、遥か遠い太陽系外惑星に移住する姿が描かれることがある。しかし、これらの惑星は近いものでも数十光年という距離にあり、今の人類科学力では到達するまでに途方もない時間がかかることから、現実的な目的地としては考えられていない

※この「太陽系外惑星」の解説は、「宇宙移民」の解説の一部です。
「太陽系外惑星」を含む「宇宙移民」の記事については、「宇宙移民」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/13 23:36 UTC 版)

海洋惑星」の記事における「太陽系外惑星」の解説

太陽系には海洋惑星存在しないため、海洋惑星という言葉は太陽系外惑星の議論の中で使われる海洋惑星の海の深さ数百km達し地球海洋平均で3.7km)とはスケール異なる。海底高圧となり融点上昇するために常温凝固し地球上で見られないような高圧相氷がマントル構成していると考えられるまた、恒星に近い高温惑星では、海洋温度沸点上回って超臨界流体となり、太陽系ガス惑星同じように、惑星明確な表面」が存在しなくなっている可能性がある。 グリーゼ581d海洋惑星候補天体1つである。この惑星グリーゼ581ハビタブルゾーン内の寄り公転しており、液体の水存在する十分なほど惑星の表面温度高められている可能性がある(ただし実在しない可能性指摘されている)。 太陽系外惑星海洋惑星候補としてケプラー11惑星系GJ 1214 bケプラー22bケプラー62fケプラー62eTRAPPIST-1惑星系挙げられる。これらの太陽系外惑星はケプラー衛星によって観測されることが期待されている。

※この「太陽系外惑星」の解説は、「海洋惑星」の解説の一部です。
「太陽系外惑星」を含む「海洋惑星」の記事については、「海洋惑星」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/13 04:27 UTC 版)

惑星」の記事における「太陽系外惑星」の解説

1990年代以降観測技術発達により、太陽系以外の天体でも惑星有している恒星発見されつつある。これらを太陽系外惑星、あるいは系外惑星と呼ぶ。 21世紀初頭までに発見され系外惑星はすでに300超えているが、それらはほとんど全て間接的な証拠よるものであり、ホットジュピターエキセントリック・プラネットのような太陽系の諸惑星とは大きく異な軌道を持つ系外惑星ほど発見されやすかった。しかし継続的な観測によるデータ蓄積画像解析技術改良進んだ結果木星土星のような軌道を持つ系外惑星発見され始めたまた、2008年にはフォーマルハウトbがか座β星bなどを皮切りに系外惑星の姿を画像直接確認できるようになっている系外惑星表面模様描かれている画像については、全て想像図である)。 系外惑星には木星よりずっと重いものも見つかっているので、伴星との区別問題になる。国際天文学連合系外惑星ワーキンググループは、次の条件を満たす天体暫定的に惑星定義している。 重水素熱核融合起こす質量達していない。 星または星の残骸周りを回る。 上限質量組成などによって変わるが、太陽と同じ組成仮定する木星13倍となるので、この数字一律に使われることが多い(なお、熱核融合永続しないので、現在熱核融合起こしていないからといって惑星とは限らない)。 熱核融合起こす質量達している、つまり、熱核融合起きているか過去起こった天体褐色矮星と呼ぶ。星または星の残骸周り回っていない天体は、従来浮遊惑星などと呼ぶこともあったが、sub-brown dwarf準褐色矮星、亜褐色矮星などと訳す)と呼ぶよう、ワーキンググループ定めている。 なお、惑星科学者多くは、惑星褐色矮星違いはその形成過程にあり、惑星原始星取り巻原始惑星系円盤内で形成され褐色矮星分子雲そのものから直接形成されたと考えている。惑星形成時には固体木星質量超える惑星ができる場合には、地球質量10程度)がまず作られ、これに周囲ガスが(大気ではなく惑星材料として付加される考えられている。このような過程形成され天体重水素熱核融合起こすほどの質量達す場合稀に存在し形成過程基づいて分類すれば、惑星褐色矮星質量分布一部重な可能性がある。木星質量数十倍以下の褐色矮星恒星周り回っていて惑星区別できないような状況は希ではあるが、それでも一定の割合発見されるので、そのときワーキンググループの定義が援用される。

※この「太陽系外惑星」の解説は、「惑星」の解説の一部です。
「太陽系外惑星」を含む「惑星」の記事については、「惑星」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/21 07:44 UTC 版)

K型主系列星」の記事における「太陽系外惑星」の解説

K型主系列星質量小さく天体中心部での核融合速度穏やかなため、寿命は約200億-1000億年と長く (太陽寿命は約100億-120億年)、太陽よりも長期間わたって安定した主系列星段階にとどまる。これは恒星周囲惑星系誕生しうる生命にとって進化猶予時間長くなることを意味しK型主系列星地球外生命探査対象として高い関心集めている。これは赤色矮星も同様である。さらに、K型星太陽のようなG型星比べて紫外線放射が弱い。紫外線DNA傷付けるため、核酸基礎とした生命発生阻害する可能性がある。 また、K型主系列星G型主系列星よりもおよそ3倍から4倍多く存在するため、惑星探査がより容易となる。M型主系列星 (赤色矮星) も非常に豊富存在するが、これらの周囲ハビタブルゾーン内にある惑星自転と公転潮汐固定されている可能性高く、また岩石惑星により影響与えうる恒星フレア起こしやすいため、生命発達するにはより厳しい環境となる。赤色矮星よりも高温であるため、K型主系列星ハビタブルゾーン赤色矮星周りよりも遠方となる。 これらの理由により、K型主系列星は太陽系外惑星や地球外生命探査対象として最も適していると考えられるいくつかの非常に近傍にあるK型星例えエリダヌス座ε星、HD 192310グリーゼ86うお座54番星周りには惑星発見されている。

※この「太陽系外惑星」の解説は、「K型主系列星」の解説の一部です。
「太陽系外惑星」を含む「K型主系列星」の記事については、「K型主系列星」の概要を参照ください。


太陽系外惑星

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/13 04:30 UTC 版)

天王星型惑星」の記事における「太陽系外惑星」の解説

いわゆるホット・ジュピターのうち、質量比較小さいものを「ホット・ネプチューン」と呼ぶことがある。また海王星質量未満だが、10地球質量程度スーパーアース)よりは大き惑星海王星型に近い性質を持つため、「ミニ・ネプチューン」と呼ばれる。さらにそうした中で、惑星が海に覆われており生命存在する可能性を持つものには「ハイセアン惑星」という呼称提唱されている。

※この「太陽系外惑星」の解説は、「天王星型惑星」の解説の一部です。
「太陽系外惑星」を含む「天王星型惑星」の記事については、「天王星型惑星」の概要を参照ください。

ウィキペディア小見出し辞書の「太陽系外惑星」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「太陽系外惑星」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「太陽系外惑星」の関連用語

太陽系外惑星のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



太陽系外惑星のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
新語時事用語辞典新語時事用語辞典
Copyright © 2024 新語時事用語辞典 All Rights Reserved.
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽系外惑星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、WikipediaのCOROT (改訂履歴)、古在メカニズム (改訂履歴)、宇宙移民 (改訂履歴)、海洋惑星 (改訂履歴)、惑星 (改訂履歴)、K型主系列星 (改訂履歴)、天王星型惑星 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS