トランジット‐ほう〔‐ハフ〕【トランジット法】
トランジット法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/07 14:53 UTC 版)
「太陽系外惑星の発見方法」の記事における「トランジット法」の解説
トランジット法(英語: Transit method、Transit photometry)または食検出法は、周囲を公転する惑星が周期的に主星の手前を通過する(トランジットを起こす)ことにより生じる、主星の明るさの周期的な光度変化から惑星を発見する観測方法である。地球から見てトランジットを起こす惑星はトランジット惑星(英語: Transiting planet)と呼ばれる。惑星の通過によって恒星が暗くなる割合は惑星の大きさに依存し、恒星の周縁減光を考慮しない場合、減光率 δ {\displaystyle \delta } は恒星の半径 R ∗ {\displaystyle R_{*}} と惑星の半径 R p {\displaystyle R_{p}} を用いて以下のように表される。この式に基づくと、木星が太陽の手前を通過した際の減光率は約1%、地球の場合だとわずか約0.0084%しかないことになる。 δ = ( R p R ∗ ) 2 {\displaystyle \delta =\left({\frac {R_{p}}{R_{*}}}\right)^{2}} 理論的なトランジット惑星を持つ恒星の光度曲線モデルからは、トランジットによる減光度(δ)、トランジットの継続時間(T)、恒星面との接触開始から終了にかかる時間(τ)、そして惑星の公転周期(P)を求めることができる。ただしこれらの観測はいくつかの仮定に基づいており、惑星と恒星は球形、恒星面全体の明るさは均一、惑星の軌道は円形(軌道離心率が0)と仮定される。恒星面においてトランジット惑星が通過する相対位置に応じて、観測される光度曲線の物理的パラメーターが変化する。減光度(δ)は、惑星の通過中に主星の光度がどれほど減少したかを表したもので、恒星と惑星の半径比を示している。例えば、太陽規模の恒星の手前を通過する惑星の場合、半径が大きい惑星だと減光度が大きくなり、半径が小さい惑星だと減光率は小さくなる。トランジットの継続時間(T)は、惑星が恒星面を通過し終わるまでに要する時間で、惑星が軌道上を移動する速度に応じて変化する。恒星面との接触開始から終了にかかる時間(τ)は、惑星が恒星面と接触を始めて終わるまでの時間を表す(日食における第一接触と第二接触の間、第三接触と第四接触の間の時間と同義)。惑星が恒星面の中心を通るとき、惑星が接触を終えるのにかかる時間は最短となり、中心から離れたところを通過するほどこの時間は長くなる。これらの直接的に観測可能なパラメーターから、その他のいくつかの物理的パラメーター(惑星の軌道長半径・半径・軌道離心率・軌道傾斜角、主星の質量・半径)を計算で決定できる。また、ドップラー分光法やトランジットタイミング変化法での観測と組み合わせると惑星の質量を求めることもでき、質量と半径が分かれば惑星の密度も判明する。この密度の値から、惑星がどのような組成で構成されているかを推測することも可能となる。双方の方法で観測された惑星は、多くの既知の系外惑星の中でもよく特徴付けられている。 ただし、トランジット法には2つの大きな短所がある。1つ目は、そもそもトランジット法で惑星を検出するには観測者から見て惑星が恒星面を通過するような軌道を持っている必要があるという点である。惑星の軌道面が恒星面上を直接通る確率は、恒星の半径と惑星の軌道長半径の比率の近似で表される(小さな恒星では、惑星の半径も重要な要素となってくる)。太陽規模の恒星から0.05 auの至近距離を公転する惑星がトランジットを起こす確率は約9%だが、軌道が遠くなるとその確率は反比例して小さくなる。1 au離れた位置にある惑星の場合、その確率は約0.46%まで下がる。さらに、主星からより離れた惑星では、確率はより一層低くなる。そのため、トランジット法で観測している恒星が元から惑星を持つ恒星という保証は得られない。しかしドップラー分光法と異なり、トランジット法では一度に複数の恒星を観測する事が可能であるため、広い範囲に渡って恒星を継続的に観測し続けることによってドップラー分光法よりも多数の惑星を見つける事ができる。 トランジット法の2つ目の短所は、誤検出率の高さである。2012年の研究では、ケプラーミッションで得られた惑星が1つのみの惑星系の観測データの40%以上に誤検出が存在する可能性が指摘された。このため、単独のトランジット惑星を持つ恒星に対しては通常、ドップラー分光法などの他の手法で追加の観測が行われる。しかし、ドップラー分光法で観測するには惑星の質量が木星質量を越えないと検出は困難で、さらに検出出来たとしてもそれが褐色矮星や小型の恒星である可能性もある。ただし、誤検出率は2つ以上の惑星がある惑星系では非常に低いので、大規模な追加観測をすることなく検証することが出来る。その一部の惑星はトランジットタイミング変化法でも確認する事が出来る。 宇宙には光度が変動する天体は数多く存在しており、トランジット惑星が起源ではない光度の変動がそうであると誤認される場合がある。トランジット法での観測における誤検出は、一般的に Blended eclipsing binary、Grazing eclipsing binary、そして惑星サイズの小型の恒星によるトランジットの3つの形式で発生する。大きさが木星半径の2倍を超える惑星はほとんど存在していないため、通常の食連星系ならば惑星のトランジットと明らかに区別できるほど大きな光度の変化を生じさせるが、この区別は Blended eclipsing binary と Grazing eclipsing binary の場合においては成り立たない。 Blended eclipsing binary または Background eclipsing binary(BEB)とは、観測者から見て食連星系の近くに連星系とは無関係である別の恒星が存在しているという関係を示す。食連星系の近くに無関係な恒星がある場合、食連星系の光度曲線の減光度が小さくなり、結果としてトランジット惑星と同じような光度曲線となる可能性がある。Grazing eclipsing binary は、観測者から見て片方の恒星がもう一方の恒星をかろうじて部分日食のように部分的に覆い隠すような食連星系である。 ドップラー分光法の観測には高精度な観測機器が必要となるが、トランジット法はCCDカメラのような比較的簡易な機器でも観測ができるため、地上と宇宙空間の双方からトランジット法を使った太陽系外惑星の探索が行われている。地上からはスーパーWASP、HATネット、MEarth、XO望遠鏡などが、宇宙空間からはCOROTやケプラー宇宙望遠鏡、トランジット系外惑星探索衛星(TESS)などが成果を挙げている。また、トランジット法は数千光年離れた恒星でも観測出来る利点があり、実際に2006年に行われたSagittarius Window Eclipsing Extrasolar Planet Search(SWEEPS)では、26,000光年離れた、銀河系の中心部で16個の太陽系外惑星候補を発見しており、そのうちSWEEPS-4とSWEEPS-11の2つが惑星と確認されている。しかし、これらの惑星は非常に遠方にあるため、現在の技術でこれ以上の詳細な観測はほぼ不可能である。 主星が赤色巨星の場合、別の問題が生じる。仮に惑星がこのような恒星の恒星面を通過しても、赤色巨星の表面は常に大きく脈動しているため、恒星の光度曲線が一定ではなく、惑星による減光を見つけ出す事は困難となる。特に準巨星の場合は光度曲線の変化が著しい。また、これらの恒星は半径が大きく非常に明るいため、惑星がトランジットしている際の減光率は小さくなり、検出を難しくする。逆に小型な白色矮星、中性子星は検出しやすい。しかし、これらの天体は死を迎えた恒星の残骸のため、惑星が生き残って公転し続けている可能性は低い。 また、トランジット法からは惑星の大気組成を求める事も出来る。惑星が恒星面を通過すると、恒星の光の一部は惑星の上層大気を通過する。その際の、恒星の高解像度のスペクトルを分析する事で、大気成分を特定出来る。この手法は「トランジット分光」と呼ばれている。また、恒星の手前を惑星が通過するトランジットを「一次食(英語: Primary eclipse)」と呼ぶこともあるのに対し、惑星が恒星の背後を通過することを「二次食(英語: Secondary eclipse)」と呼ぶが、この二次食が起きると、発生のタイミングと継続時間から軌道離心率の範囲を絞り込む事も出来る。また、二次食が発生する前と後の恒星の光を測光し、二次食が起きている最中と比較することで、惑星に起因する信号のみを取り出すことができる。また、惑星の大気を検出出来れば、惑星の表面温度を求めることができる。2005年3月、2つの研究チームがスピッツァー宇宙望遠鏡を使って惑星の表面温度の測定を行った。1つはハーバード・スミソニアン天体物理学センターの David Charbonneau が率いる研究チームで、もう一方はゴダード宇宙飛行センターの L. D. Deming が率いる研究チームだった。彼らはそれぞれ、TrES-1とHD 209458 bを対象にして観測を行った。その結果、TrES-1は表面温度が1,060 Kで、HD 209458 bは1,130 Kと計測された。また、ホット・ネプチューンのグリーゼ436bも二次食を起こす事が知られている。しかし、一次食を起こす惑星が必ず二次食も起こすわけではなく、地球からの相対的な位置関係で二次食を起こさないトランジット惑星もいくつかある。例えば、HD 17156 bは90%以上の確率で二次食を起こさないとされている。
※この「トランジット法」の解説は、「太陽系外惑星の発見方法」の解説の一部です。
「トランジット法」を含む「太陽系外惑星の発見方法」の記事については、「太陽系外惑星の発見方法」の概要を参照ください。
- トランジット法のページへのリンク