元素
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/06 21:52 UTC 版)
元素の分布・存在比
元素の分布には偏りがあり、その存在比は範囲によって大きく異なる。この比率構成は元素構成比と呼ばれる。
宇宙での存在比
宇宙の元素構成比は、宇宙論により推定され、隕石分析や星の光のフラウンホーファー線解析および宇宙線調査など天文学的観測により裏付けられる。ただし宇宙の大きさが確定していない現在では、各元素の絶対量を決定できず、存在比のみが推計されている。これは1956年にスース・ユーリー図表として発表され、1968年にデータの更新を受けている。これによると、ビッグバンで生成された水素に次いでヘリウムの存在比が多く、それに比べてリチウム、ベリリウム、ホウ素の比率は極端に低い。炭素以下はほぼ原子番号の増加とともに比率が下がってゆく傾向を持つが、特徴的な部分は原子番号偶数の元素が隣り合う奇数の元素よりも存在比が多いところにある[43]。
また中性子捕獲による元素合成では、原子核に存在する数によって安定する中性子の魔法数が影響を及ぼす。これは中性子数が50, 82, 126等になると、さらに中性子を捕獲して原子量を高める反応が鈍くなるもので、結果的にこれらの中性子数を持つストロンチウム(陽子:中性子=38:50)、バリウム(56:82)、鉛(82:126)元素が比較的多くなる[40]。
地球での分布・存在比
地球全体の元素構成は、コアやマントルを直接調査できないため、隕石(コアとしての隕鉄、マントルとしてのアコンドライト)の分析や地震波から各層の弾性率・密度等の解析を組み合わせて推計される。これによると存在比で酸素が最も多く、宇宙に多い水素やヘリウムの比率は低い。金属類も多く、ケイ素、マグネシウム、鉄などが上位を占める[44]。なお、硫黄は硫化鉄状で広範囲に分散しているため、存在比がはっきり分かっていない[44]。
地殻を構成する主たる元素は、古典的な研究成果として質量比で示されるクラーク数が広く知られている。酸化物として地殻に、水として水圏に、そしてガスとして大気圏に存在する酸素が全球の存在比と同じく最も多い。違いはマグネシウムやニッケルが少なく、水素やナトリウムおよびアルミニウムが多い点がある[44]。
人体での存在比
人間の体を構成する元素は、水をつくる水素と酸素が圧倒的に多い。その存在比は海水との相関性が指摘されている[45]。ただし、唯一の例外はリンであり、また人体は微量ながら酵素の活性に必要な微量元素が使われている[45]。
注釈
出典
- ^ a b c 広辞苑 第五版 岩波書店
- ^ a b c d e 斉藤 1982, pp. 22-24, 1.3原子と元素.
- ^ a b c ニュートン別 2010, pp. 12-13, 原子と元素はどうちがうのか?.
- ^ デジタル大辞泉. “【化学元素】” (日本語). goo辞書. 2011年10月1日閲覧。
- ^ a b c d e f g h i j 斉藤 1982, pp. 9-22, 1.2近代科学と元素.
- ^ ニュートン別 2010, pp. 14-15, 原子は電子を出入りさせイオンとなる.
- ^ a b c d e f g 斉藤 1982, pp. 2-9, 1.1昔の物質観.
- ^ ニュートン別 2010, pp. 34-35, メンデレーエフの正しさは、原子構造で証明された.
- ^ ニュートン別 2010, pp. 70-74loc=周期表の元素が112個にふえた.
- ^ a b c d e f g 山口 1996.
- ^ 野沢正信. “3.アジタ・ケーサカンバリンの唯物論” (日本語). 沼津高専教養科. 2011年1月8日閲覧。
- ^ A・スマナサーラ、編集:杜多千秋. “パーリ仏典を読む 沙門果経(6) 第二章 六師外道の話 (三)アジタ・ケーサカンバラの教え” (日本語). 日本テーラワーダ仏教協会. 2011年1月8日閲覧。
- ^ 野沢正信. “4.バクダ・カッチャーヤナの七要素説” (日本語). 沼津高専教養科. 2011年1月8日閲覧。
- ^ A・スマナサーラ、編集:杜多千秋. “パーリ仏典を読む 沙門果経(6) 第二章 六師外道の話 (四)パクダ・カッチャーヤナの教え” (日本語). 日本テーラワーダ仏教協会. 2011年1月8日閲覧。
- ^ 岩波仏教辞典, p. 361.
- ^ 櫻部 1981, p. 66.
- ^ 土橋茂樹. “西洋古代・中世哲学史(2004年度)” (日本語). 中央大学文学部哲学専攻. 2011年1月8日閲覧。
- ^ アリストテレス『形而上学』第1巻第3章
- ^ 石村 1998, pp. 167-170, 第6項 本当に実在するものは、ものか、性質か 「もの」と「性質」の無限遡及.
- ^ a b 石村 1998, pp. 177-178, 第6項 本当に実在するものは、ものか、性質か 「気」の迷い-「万物は気である」(アナクシメネス).
- ^ 石村 1998, pp. 183-186, 第6項 本当に実在するものは、ものか、性質か 4人の偉大な「形而上学」者.
- ^ 高橋士郎. “八雲” (日本語). 多摩美術大学. 2011年1月8日閲覧。
- ^ 長谷川浩司. “古代〜ギリシャ・ローマの数学” (日本語). 京都大学大学院人間・環境学研究科数理科学講座. 2011年1月22日閲覧。
- ^ a b c d 千葉 2001.
- ^ 『世界大百科事典』、CD-ROM版、平凡社
- ^ a b c 樫田豪利. “Chapter1 物質の構造 (PDF)” (日本語). 金沢大学教育学部附属高等学校. 2011年3月11日閲覧。
- ^ 斉藤 1982, p. 10, 錬金術の3元素.
- ^ 斉藤 1982, p. 13, 単体と元素.
- ^ a b 斉藤 1982, pp. 32-41, 2.1. 近代科学と元素.
- ^ 斉藤 1982, p. 34.
- ^ a b 斉藤 1982, pp. 53-62, 2.3. つくられた元素.
- ^ “原子力の歴史 黎明期1895年-1952年” (日本語). 長野工業高等専門学校. 2011年3月11日閲覧。
- ^ 齋藤軍治. “有機物理化学の基礎 第1章 囲み5” (日本語). 京都大学大学院理学研究科化学専攻. 2011年3月11日閲覧。
- ^ a b c d e f g h Dennis Overbye, Lonely Hearts of the Cosmos:The Story of the Scientific Quest for the Secret of the Universe翻訳:デニス・オーヴァバイ 『宇宙はこうしてはじまりこう終わりを告げる』 白揚社、2000年、ISBN 4826900961。
- ^ KRL Home Page
- ^ a b c d 青木 2004, pp. 35-47, 第2章 ビッグバンと元素合成.
- ^ 立教大学/原子核・放射線物理学研究室 2011年4月15日閲覧
- ^ a b c d 青木 2004, pp. 53-79, 第3章 星の中での元素合成.
- ^ a b c d e f 齋藤和男 (2009年). “星の一生と元素合成” (日本語). 山形大学理学部地球環境学科. 2011年3月12日閲覧。
- ^ a b c d e f 青木 2004, pp. 82-105, 第4章 鉄より重い元素の合成.
- ^ 茂山俊和. “錬金に必要な重力 恒星の成長過程で作られる重い元素” (日本語). 東京大学大学院理学系研究科・理学部. 2011年3月14日閲覧。
- ^ “星の錬金術 金などの重元素の生成に関する新説” (日本語). AstroArts (2001年). 2011年3月14日閲覧。
- ^ 斉藤 1982, pp. 92-97, 4.1. 宇宙にある元素.
- ^ a b c 斉藤 1982, pp. 101-116, 4.3. 地球にある元素.
- ^ a b 斉藤 1982, pp. 116-123, 4.4. 生命と元素.
- ^ “収蔵資料の紹介” (日本語). 東北大学総合学術博物館. 2011年3月11日閲覧。
- ^ “元素鉱” (日本語). 東北大学総合学術博物館. 2011年3月11日閲覧。
元素と同じ種類の言葉
- >> 「元素」を含む用語の索引
- 元素のページへのリンク