鉄道車両の台車史とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 鉄道車両の台車史の意味・解説 

鉄道車両の台車史

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/23 19:53 UTC 版)

鉄道車両の台車史(てつどうしゃりょうのだいしゃし)では、鉄道車両用台車の発達過程の概略を記述する。


注釈

  1. ^ この形態は1840年に、イギリス議会に設けられた委員会で鉄道上での旅客輸送を鉄道会社の独占的管理下に置くことが決議されるまで続いた。また、それ以後も馬車を平らな床のみを備える貨車に積載して旅客輸送を行う、今のピギーバックに近い輸送形態は各国で長く続いた。
  2. ^ もっとも、ボギー台車発明以前においては、これ以外に旺盛な輸送需要に対応する方策が存在しなかったのも事実である。
  3. ^ イギリスの鉄道が標準軌間でありながら狭軌が主体の日本の鉄道と同等かそれ以下の車体断面を強いられているにもかかわらず、早くから高速運転を実施出来ている理由はここにある。イギリスで初期に建設された路線群は、小断面のトンネルが多く既設設備の改築費用のあまりの膨大さゆえに輸送力増大を約束する車両限界拡大が阻まれ続け、それでいて建設から100年以上を経た地上施設のままでもその高規格設計ゆえに手直し無しでの200 km/hを超える高速度運転が可能で、運行面からは大きな改修を要しない、という矛盾を抱えている。
  4. ^ その代償として建設費は当時のイギリスの一般的な例と比較して単位距離当たり約1/3となった。また、トンネルを回避することにより車両限界の拡大も可能になった。
  5. ^ ただし、前述したように馬車の車体載せ替えによる客車化などの形で、一部には台枠を上下に分離し、(車体の)台枠と台車枠、として双方の間にばねを入れて弾性支持を行う、明確な機能分化を行った形態のものも出現していた[2]
  6. ^ 黎明期のボギー台車ではこれは左右の側枠を連結する、横梁(トランサム)と分離されておらず、また弾性支持もなされていなかったが、やがてこれらは明確に分離され、枕梁はばねで台車枠本体に対し弾性支持されるのが一般的となって行く。
  7. ^ 高い用地取得費と低い人件費、それにニュートン以来の自然科学の伝統故に、イギリスでは直線主体の線形が自然なものとして受け入れられていた。このため長大な軸距の二軸車などでも走行について特に不都合はなく、ボギー台車の導入は輸送力増強要請がそれらの在来車では充足できなくなるまで遅れることとなった。大陸側のドイツフランスなどもイギリスに近い状況であった。
  8. ^ 脱線等で破損した場合の修復・交換も容易であった。総じてアメリカの鉄道ではその極端な間距離の長さや人口集積度の低さなどの事情もあってメンテナンスフリーへの意識が高く、また頑丈で現場での対処(ダメージコントロール)が簡便かつ容易な構造が好まれる傾向が強い。
  9. ^ これはペンシルバニア鉄道のような大私鉄も例外ではなく、軸箱部に馬蹄形の鋼製ホーンブロックを用い、各部材をボルトナットで緊結するその構造は、19世紀後半のアメリカ製客車用台車のトレードマークであった。なお、この種の台車は日本にももたらされており、建設に当たりアメリカ流のプラクティスが導入された幌内鉄道では、その開業時にアメリカから輸入された2軸ボギー客車の台車枠が木製であった。このことは鉄道博物館に現存する「開拓使号客車」や小樽市総合博物館に保存されているい1号客車で確認できる。
  10. ^ 柔らかく乗り心地が良く、しかも床面高さを軸ばね式より低くできるウィングばねを軸箱支持に採用し、強靱かつ事故破損時の修復が容易でしかも顧客の要望に応じて自由に車軸間の軸距を変更可能な型鍛造による側梁を備える。
  11. ^ 22Eは21Eの拡大版、39Eは後の27GEのマキシマム・トラクション版。マキシマム・トラクション台車は2軸ボギー台車の車輪径を前後で違えて動輪となる一方を大径とし、心皿位置をも動軸側に偏倚させ、粘着力の強化を図る構造のものをいう。
  12. ^ 76E・77Eは低床車用として27GEを基本に後述の27MCBと同様の新機構を導入したもの。76Eは主電動機を外掛け式とした短軸距モデル、77Eは主電動機を車軸間に内掛けとした長軸距モデルで、主電動機の支持位置以外の基本構造は同一である。なお、ブリル社製台車に与えられている形式名のEEnroll(登録)を意味し、量産製品であることを示した。
  13. ^ 1909年開発。なお、型番のMCBMaster Car-Builders Associationの基準に準拠して設計されたことを示し、他社製品にも同様の付番例が存在した。
  14. ^ ただし、試作要素の強い27Gなどの一部には鋳鋼製側梁を備えたものもあった。
  15. ^ Brill 27MCB-2・2X・4Xなど。日本には27MCB-1・2・2Xが輸入されたほか、ブリル社と技術提携を行っていた日本製鋼所による正規ライセンス生産品の27MCB-4Xが新京阪鉄道へ納入されている。
  16. ^ 荷重が軽い間は柔らかいコイルばねが作用し、荷重が一定水準を超えると、このコイルばねがセットしてしまう(圧縮限界に達する)前に上下の周囲に設けられた支持部品同士が接触してコイルばねをバイパスし、硬いが耐荷重上限の高い板ばねに直接荷重がかかるようになる。つまり、枕ばねのばね定数を2段可変式としており、ブリル社は1910年代には乗り心地を支配するのは枕ばねであると結論付け、重視していたことが判る。事実この時代に製造された同社製台車はいずれも枕ばねを可能な限り柔らかくするように設計されており、車両の大型化による荷重の増大を見越して硬い枕ばねを好んだボールドウィンと好対照であった。
  17. ^ あるいはトラニオン・タイ・ロッドとも呼ばれる。
  18. ^ 揺れ枕と平行に配され、左右の側枠を結合する部材。
  19. ^ 回転部の摩擦力を利用する単純なリンク機構であったが、台車側受の摩擦抵抗軽減とビビリ振動の抑制に絶大な効果があった。世界各国でボルスタアンカーの効用が正しく理解され広く普及したのは1950年代以降であり、非常に先進的な設計であった。
  20. ^ スイングリンクと揺れ枕の接触部を半球状の本体と、これに対応するくぼみで構成。球状であるため摩耗の点で有利であったが、摩耗しきった場合にはリンク本体の半球部を鍛造などで新規に作り出す必要があり、型鍛造を行うのに必要な設備を持たない中小私鉄では手に余る面もあった。
  21. ^ 先述のボールハンガーと1セットで使用され、スイングリンクの可動ピンを抑えばねで常時押さえつけることでがたつきを除去する。この機構は特許対象外であったのか、後に国鉄TR23・25などで模倣採用された
  22. ^ もっとも、これらの特徴的な新開発機構の大半は模倣品対策として特許で保護されており、21E同様に各社で製造された模倣品はことごとくこれらの機構を省略していたため、乗り心地の点で正規品に大きく劣った。
  23. ^ その先進性と乗り心地の良さゆえに27MCB系は採用各社で非常に長期に渡って使用され続けた。たとえば日本では実に初号機完成からほぼ1世紀を経た2007年まで、途中で軸受のローラーベアリングへの交換などのアップデートを実施しオリジナルの状態は保たれてはいなかったものの、高松琴平電気鉄道で現役の旅客車両に使用されている。
  24. ^ AA形は各部の設計変更や強化を行って、心皿荷重上限をA形よりも引き上げた改良モデル。
  25. ^ ライバル製品のBrill 76E・77Eと同様、L形は主電動機を外掛け式とした短軸距モデル、R形は主電動機を車軸間に内掛けとした長軸距モデルで、主電動機支持位置以外の基本構造は同一である。
  26. ^ 大型の台車枠を型鍛造で製造するには、その規模に見合った大型の鍛造機を必要とする。
  27. ^ 具体的には日本の日本製鋼所やイギリスのブラッシュ・エレクトリック(Brush Electric)社などの国外メーカーにライセンスが供与され、これらの企業では正規のブリル社製品と同等の機構を備えた台車が製造された。
  28. ^ BLW社製台車はコピー品の製造が特に容易であることで知られ、例えば南海鉄道天下茶屋工場は自社のモハ1201形用N-16として汽車製造K-16や日本車輌製造D-16を採寸しコピー品のコピー品を、つまり孫コピー品を製造している。知的財産権という概念が未発達であった時代故の産物ではあるが、これは車両保守を主業務とする工場でさえ、靱性の確保などの必要から鍛造品とせねばならない釣り合い梁さえ調達できれば容易にコピー品を製造可能なほど、BLW社製台車が部材調達や工作の容易性を重視した設計であったことの証である。
  29. ^ メーカーカタログではEUREKA台車と謳い、そのメリットを列挙していた。
  30. ^ この特殊構造は、以後の路面電車用低床台車の進むべき道を示唆するものであった。もっとも、この台車には従輪の軸重が軽いために特に車体の長い車両に装着されると曲線通過時に従輪の脱輪を引き起こしやすい、という問題があり、ブリル社も以後は通常台車を低く設計する方針に転換、ここで示された方策の数々はおよそ四分の三世紀に渡って忘れ去られることとなった。なお、このマキシマム・トラクション台車はアメリカでは上述の不具合ゆえに短期間で製造が打ち切られたが、2階建て電車を多用したイギリスでは構造の特徴から低重心化が容易なためその後も愛用され続け、1910年代までJ.G.ブリル社からライセンス供与を受けていたブラッシュ・エレクトリック社で生産が継続している。
  31. ^ 採用各社の多くが本台車の廃棄、あるいは本台車装着車の淘汰を短期間で実施している。
  32. ^ この手法を用いた車両は部分低床車と呼ばれ、後年バリアフリーへの対応として路面電車の低床化が要請されるようになった際に、そのメリットが再認識されることになる。
  33. ^ 5000・6000形。6000形はこの構造を活用した2階建て(構造的には現在日本の近鉄や京阪、あるいはJR各社で運行されている二階建て車両に近い)で、客室側を小直径の従輪としたBrill 62Eを装着していた。なお、同種の構造の部分低床車はロサンジェルスのパシフィック電鉄にも導入されている。
  34. ^ 20世紀前半に台車設計で最先端を走っていたドイツでさえ、20世紀初頭の段階でのベルリンの試験線における200 km/h運転を別にすれば、1933年のフリーゲンダー・ハンブルガー運転開始までは最高速度は150 km/h以下、表定速度は110 km/hに達しなかった。このため、古い設計の台車でも、営業運転の範囲で危険な第二次蛇行動が問題となることはなかった。
  35. ^ リンケ=ホフマン(Linke-Hofmann)社などによる。なお、この種の台車は日本へも輸入されており、鉄道院が初のボギー台車を備える電車として1909年に製造したホデ1形用として採用されている。この台車はわずか10年足らずで廃棄されたため詳細が判然としないが、残された写真などから、軸箱部分をリンクで支持された重ね板ばねで支える、後のゲルリッツ式台車とも共通する要素を備えた、複雑かつ先進的な構造であったことが判明している。
  36. ^ Durch-zug:日本語に直訳すれば「直行」。一般的には「急行」と解される。
  37. ^ 同様の軸箱支持機構を備えた台車は、遅くとも19世紀末のドイツには既に存在していた。つまり、この部分だけを抜き出して採用した台車をゲルリッツ式と称するのは、厳密には誤りである。
  38. ^ 2段リンクの作用により一次蛇行動が発生する速度を低速域に落とし込む。このため低速域ではやや乗り心地が低下するが、それを代償とすることで高速運転を行う急行形客車として重要な高速度域での走行特性が向上する。また、ロングスパンの重ね板ばねを用いたことで必然的に軸距が延びたが、これも直進安定性の向上に大きく寄与している。
  39. ^ 日本でも同様の構造・機構を備えた台車が鉄道省の手によって試作され、戦後まで国鉄オハ35系客車で試用された。この試作台車は高速走行時の乗り心地の素晴らしさを激賞されたが、長軸距もあって曲線の多い日本では量産制式採用には至らなかった。
  40. ^ なお、SWS社は1956年に同じチューリッヒに所在したシンドラー社の傘下に入り、1960年にシンドラー社に吸収合併されている。
  41. ^ スイスではこの時期、他にもSIG社によるトーションバーを利用した枕ばね機構、それにブラウン・ボベリ社によるBBCディスクドライブとして知られる撓み板ばねによる平行軸無装架駆動方式が開発されている。
  42. ^ イギリス特許No.648516A。アメリカ特許としては1954年申請、1957年成立(No.2802662)。
  43. ^ 連接構造の付随台車については強制車体傾斜機構との兼ね合いで枕ばねを各車体ごとに独立させる必要があったため、側梁を両軸箱の外側に長く延長しその両端部に空気ばねによる枕ばねを配置するという他に例を見ない特異な形状が採用されていた。
  44. ^ 1937年8月31日法と呼ばれる法律に基づき、当時存在した大私鉄を国有化してフランス国鉄 (SNCF) が成立した。
  45. ^ その後の増備車ではY20・24と次々に新型台車が導入されているが、これらも徐々に近代化が進み軸箱梁式台車に近い構造となったものの、多くは釣り合い梁を残したままであった。ただし、特に振動が問題となるル・ミストラル(Le Mistral)などの特急列車用食堂車などには、自国開発技術に対するプライドの高いSNCFとしては例外的に、スイス流の円筒案内式台車を採用したケースも存在した。もっとも、その一方で後述するようにばね間質量の軽減に大きな効果が得られるボルスタレス式台車の構想と開発ではフランスが先陣を切っており、また有名なBB9004による331 km/hの世界速度記録もこの時期に達成されている。
  46. ^ UICの標準台車の1つとしても採用されている。
  47. ^ ル・キャピトールでさえ、200 km/h運転開始当初は釣り合い梁式台車を装着した、旧式の非冷房車が使用されていた。
  48. ^ ただし、ル・ミストラル用客車に採用されたY26で既に空気ばねを採用しており、空気ばねそのものの採用を全面否定していたわけではない。
  49. ^ TGV PSEも後年の高速化改造の際に併せて枕ばねの空気ばね化が実施されている。
  50. ^ 枕ばねが1組の板ばねではなく、複数の重ね板ばねを束ねて使用している点を特徴とする。
  51. ^ このため後年の高速新線の開業時には、このETR300やETR200はより高速での運転を可能とするために金属ばねを枕ばねとする円筒案内式台車を新製、これに交換されている。
  52. ^ 当時のアメリカでは台車枠は言うに及ばず、大形蒸気機関車の主台枠およびシリンダブロック、あるいは戦車の車体といった、極めて大形かつ一定以上の強度保持が要求される複雑な形状の構造物についても一体鋳造が可能で、実際にも量産が行われていた。なお、気候が湿潤な日本においては大形鋳物部品の鋳造は製造歩留まりが極端に低く至難の業で、熟練鋳造担当者の経験と勘によってかろうじて実現されていた。このため、戦前には住友金属工業と川崎車輌の2社のみが台車枠の一体鋳造を実用化し、より大形のF形電気機関車用台車や蒸気機関車用台枠に至っては住友のみが製造可能、それも特注品に近い状態で、工場のラインでの大量生産は事実上不可能という有様であった。
  53. ^ ベッテンドルフ型そのものは1910年代に開発されたもので、同社がその構造について特許を取得しなかったことからアメリカ以外の各国にも広く普及した。日本では国鉄貨車用のTR41形などがこの系統に属する。
  54. ^ アメリカでも1920年代に軸梁式台車が開発されるなど、高速度運転に対応する革新的な構造を備える新型台車の研究開発は行われていたが、これらの新機構や列車の高速運転に対する鉄道事業者側の関心は薄く、かつその意識もまた低くかった。これらはドイツのフリーゲンター・ハンブルガーに影響された軽量高速気動車列車などへの採用例が目立つ程度で、一般的な客貨車への採用事例はごく少数に留まっている。それゆえ、一般向けでは鉄道事業者の重視するメンテナンスフリー化を前面に押し出せた、軸箱支持に可動ピンの類を使用しない従来方式の一体鋳鋼台車のみが改良を重ねつつ広く普及している。この傾向は軍事貨物輸送の完遂を至上命令とする第二次世界大戦中の戦時輸送体制の下で一段と強化され、やがてモータリゼーションに伴う戦後の鉄道産業全体の斜陽化へと結びついてゆくこととなる。
  55. ^ 後述する日本の汽車製造が開発したエコノミカルトラックと同様、空気ばねの横剛性に期待して揺れ枕を省略して軸箱支持機構を大幅に簡素化した台車。なお、この台車はパイオニアIIIという名称で知られるが、パイオニアI・パイオニアIIという台車が別に存在するわけではなく、バッド社が開発したパイオニアIIIという車両システムの一部をなすためにこの名で呼ばれているものである。
  56. ^ メトロライナーでのこの方式の採用は、1960年代以降の北東回廊を含む運行予定各線の急激な軌道保守状況悪化に対応してのものであったとされる。高速運転に対応すべく枕ばねに空気ばねを採用し、揺動抑止のためにボルスタアンカーも装着されてはいたが、このばね下重量の大きな台車による最高188 km/hでの高速走行が、運行開始当時悪化しつつあった北東回廊の軌道状況を更に悪化させる要因となったことは否めない。実際にも運行開始直後に渡米してメトロライナーに乗車した西尾源太郎は、運行開始に当たりペンシルバニア鉄道→ペンセントラル鉄道が巨費を投じて軌道強化などの設備投資を行っていたにもかかわらず、この列車の橋梁通過時の乗り心地が悪く、曲線区間での動揺が著しかったことや、貨物列車と共用する関係で曲線区間のカント設定が最適化されていない路線でのこの台車による高速走行に問題があったことを示唆している。なお、メトロライナーはその後、軌道条件の悪化を理由とする最高速度の低下を余儀なくされている。また、アメリカでの釣り合い梁式台車の採用は1980年代になってもなおも続き、1983年川崎重工業ニューヨーク市地下鉄に納入したR62形用KW-55までニューヨーク市側のオーダーに従ってこの方式で設計されるという有様であった。
  57. ^ 例えば20世紀前半を通じてアメリカにおける有力車両メーカーであったセントルイス・カー・カンパニー (en:St. Louis Car Company) は1960年代末までに事実上鉄道車両生産を終了し、台車メーカーとして一時は隆盛を極めたJ.G.ブリル社も1944年には廃業、アメリカン・カー・アンド・ファウンダリー社en:American Car and Foundry Company1959年をもって旅客車生産から撤退、上述のバッド社は鉄道車両メーカーとして1980年代までかろうじて存続したが、これも70年代以降の激減したアメリカの国内需要では事業が成り立たず、1987年にカナダのボンバルディア・トランスポーテーションに吸収合併されて消滅しており、アメリカにおける旅客用鉄道車両の、ひいては高速車両用台車の設計製造ノウハウは、1970年代後半までにほぼ完全に喪われた。
  58. ^ 特に日本の国鉄では、長らく蛇行動による脱線事故が発生しても「線路が歪んでいたことが原因である」と判断されており、蛇行動の発生メカニズムそのものを考察するという発想が欠如していた。軌道不整といった軌道側の要因も蛇行動の拡大に大きく影響していたことは確かであり、この判断は必ずしも誤りではなかったが、根本原因を特定する上ではミスリーディングを誘発するものであったことは否めない。
  59. ^ 枕梁と車体の間には従来通りのボルスタピンと側受が存在し、牽引力はそれらによって伝達される。
  60. ^ ただし後述するように、後年になって大阪市交通局が住友金属工業と共同で複列コイルばねの横剛性に依存したノー・スイングハンガー台車を、それもボルスタアンカーを装着しない、非常に簡素化された設計で開発している。また、貨車用としては一般貨車の高速化が求められるようになった1966年のTR95・TR95A以降、2軸ボギー貨車でこの種の台車が一般化している。
  61. ^ 従来は側受の摩擦抵抗を適切な値とすることで台車の旋回を制限し直進安定性の確保を図っていたが、このボルスタアンカーの採用で復元ばね特性を利用可能となった。
  62. ^ 日本の鉄道における台車へのボルスタアンカー装着の最初の例としては1951年汽車製造阪急電鉄京都線200形用として納入したKS-1Aと京阪電気鉄道1700系用として納入したKS-3A・3Bが挙げられる。これらは既に軸箱間を結ぶ線に極力近い位置にそれと平行にボルスタアンカーを装着し、各軸箱にもダンパーが付加されており、台車のボルスタアンカー取り付け位置が車体の前後方向のピッチング現象に与える影響に関する研究が同社で進んでいたことを示している。また、住友金属工業では1952年3月に竣工した京阪電気鉄道1700系第2次車用FS6がボルスタアンカー装着台車の初号機となっており、ボルスタアンカーはこの時期以降、都市間高速電車を中心に日本で急速に採用例が増加している。
  63. ^ 1910年代に日本車輌製造が開発した野上式弾機装置の一部においては、枕ばねを二重構造の金属筒に納め、その伸縮時に円筒内の空気の流入・排出を絞って制限することで一種の空気ばねあるいはエアダンパーとしての作用を期待する構造を採用していた。また、1930年代には日立製作所が金属製ベローズを使用する空気ばね台車を考案、特許を取得している。
  64. ^ ヨーロッパでは自動車用タイヤメーカーとして知られるフランスのミシュランが、1930年代以降「ミシュラン台車」と称するゴムタイヤを車輪に使用する台車を設計・製作し、気動車や超軽量客車に採用された。これは当時の同社社長が夜行寝台列車の乗り心地の悪さに辟易して発案したとされる。この台車を使用した客車は幹線用として1940年代に100両以上が製造されている。空気入りタイヤと鉄車輪を組み合わせて車輪とするこの台車も一種の「空気ばね台車」と言えるが、軸重・荷重制限も厳しかったことなどから4軸あるいは5軸構成のボギー台車とせざるを得ない(そのため軌条と接触する外輪としてフランジ付き鉄車輪を併用しているにもかかわらず、走行抵抗が通常の2軸台車よりも大きくなる)など制約が多く、フランスおよびその植民地向け以外にはほとんど受け入れられず(ただし、アメリカ合衆国のデンバー・アンド・リオグランデ・ウェスタン鉄道同種の台車を装着した気動車が使用された実績がある)、幅広く普及するには至らなかった。このミシュラン台車では軸ばねに自動車のサスペンションと同様、重ね板ばねの両端をリンクで支持する(シャックルで吊る)機構が採用されており、その点でも当時の自動車技術の影響が顕著であった。なお、このミシュラン台車を装着する気動車はフランスの旧植民地などに21世紀初頭時点でも一部が現存している。
  65. ^ のち汽車製造常務取締役・川重東京冷熱サービス取締役社長・鉄道友の会副会長を歴任。高田は1950年代に渡米してグレイハウンドの空気ばねを実見しており、これが空気ばね台車開発の直接のきっかけとなった。
  66. ^ 当初は運輸省の補助金を得て、国鉄キハ17系気動車DT19・TR49を改造して空気ばねの試験が実施されたが、これはベースとなったDT19・TR49の枕ばね部の致命的な構造欠陥から空気ばねの性能が発揮されず不調に終わり、以後しばらく国鉄による実車試験は行われなかった。
  67. ^ タイヤメーカーであるブリヂストンの協力は得られたものの、少数の試作故にコスト面の問題から既存のスクーター用タイヤチューブの金型が流用されたという。
  68. ^ 剛性の確保が難しい空気ばねを軸ばねとするには、円筒案内式あるいは軸梁式などの、横方向に剛い特性を備える軸箱支持機構であることが望ましく、その点でシンドラー式台車のライセンスを取得していた汽車製造は有利であった。なお、軸ばねの空気ばね化は後にOK形台車と称する軸梁式台車を開発していた川崎車輌が山陽電気鉄道2700形2701用として1959年に試作したOK-20軸梁式台車で枕ばねを含めた完全空気ばね化に挑戦しているが、これも続くOK-22以降の試作空気ばね台車では軸ばねが金属ばねに逆戻りしている。
  69. ^ この特性はラッシュ対策に悩む日本の私鉄各社が後年、コイルばね台車ではラッシュ時の過大な床面沈下が問題となる通勤電車に空気ばねを積極的に採用する大きな理由の一つとなった。
  70. ^ 京阪1810系用として1957年より製造。金属ばねを用いるKS-15の枕ばねを空気ばねに置き換えた機種で、軸箱支持機構に円筒案内式(シンドラー式)の機構を採用することもあって、優れた振動特性を発揮した。
  71. ^ 京阪では200022002400500010002600(本系列のみ種車となった2000系からの流用品を装着)の各系列に大量採用され、その生産は汽車製造の川崎重工業への吸収合併後の1977年まで続いた。
  72. ^ 1810系の1815で試用。エコノミカルトラックを基本に開発された、左右の車輪が車軸で連結されない(個別に回転できる)構造の台車。
  73. ^ 2200系で長期試験の後、解体し切り刻まれた上で各部の応力分析などに役立てられた。
  74. ^ 205系電車211系電車でようやく大手私鉄並みの車両水準に達したばかりか、軽量ボルスタレス台車の採用に先鞭をつけた。
  75. ^ イニシャルコストの高騰抑制を最重視し、301系電車117系電車201系電車、あるいは着雪の凍結による枕ばねの固渋が問題となる北海道向け電車・気動車用といった特殊なケースを除き、空気ばね台車の一般車への採用は行わなかった。そのため、国鉄末期[注釈 74]から分割民営化後のJR各社で空気ばね台車を装着した車両の製造が開始されると、特に高収益をもたらす大都市圏で運用される車両を中心にサービス面で障害となるそれらの金属ばね台車を装着する国鉄形式の淘汰が急速に進んだ。
  76. ^ これは先述の20系特急電車用DT23系として結実することになる。
  77. ^ 1957年に東急5000系(初代)用TS-308を試作し、1958年には札幌市交通局D1000形気動車用TS-107を製造しているが、本格的な高速電車用空気ばね台車の量産は1960年東急6000系電車向けTS-311・TS-312以降となった。
  78. ^ 名古屋市交通局向けKL-10と相模鉄道向けKH-15を1957年に試作。量産空気ばね台車は1959年以降。
  79. ^ 枕ばねに板ばねを用いるシンプルな設計で、コイルばねを用いたKD-7との比較試験の結果、量産台車では不採用となったものであった。
  80. ^ 例外として、積載物が易損品である一部の専用貨車や、高速運転に対応する一部の国鉄貨車で軸ばねを備えた台車(TR24など)の採用例が存在する。
  81. ^ 合成ゴムは耐油性に優れる反面、弾性の点で天然ゴムに劣ると判定され、この時期には双方が必要や使用条件に応じて選定・採用されていた。
  82. ^ そのため、弾性車輪を採用した路面電車の多くは発電ブレーキ常用で、なおかつ基礎ブレーキ装置として踏面摩擦に依存しないドラムブレーキを採用したケースが多い。また、踏面ブレーキ使用のまま弾性車輪を採用した各形式では、後年タイヤ部熱膨張による固定ボルトの緩みの問題に手を焼いた末に通常車輪に交換したケースが少なからず存在する。
  83. ^ 後年、コイルばね台車の振動問題に苦しめられたドイツのICEでこの弾性車輪を採用したが、これは高速走行中のタイヤ部割損による脱線事故(エシュデ事故 (en:Eschede train disaster)。事故の詳細についてはICE#エシェデ鉄道事故を参照のこと)を引き起こす結果となった。
  84. ^ 1950年代の路面電車(1800形など)での採用以来、東山線名城線名港線でSAB型と呼ばれるスウェーデンで開発された弾性車輪を2004年まで採用し続けていた。もっとも、この名古屋市交通局も鶴舞線桜通線上飯田線では車両の大型化などの理由から、東山線でもN1000形ではメンテナンス性の理由から、それぞれ通常の一体圧延車輪を採用している。
  85. ^ なお、広島電鉄は車輪のバックゲージ修正など車両保守作業における必要に迫られて、70形導入時にゴムブッシュ圧入機を自社工場で独自に製作(ブッシュそのものはドイツ製を輸入した)、日本では確立されていなかったこのドイツ流の弾性車輪の運用法を試行錯誤の末に確立しており、70形導入以後に設計された自社発注車でこの弾性車輪を標準採用している。
  86. ^ 国鉄技術陣自身、この設計では高速走行時に良好な乗り心地が得られないことは承知しており、最高速度90 km/hとした場合には十分、ということでこの設計が採用された。
  87. ^ このため続くDT19・TR49では制動力の低下を承知でブレーキを片押し式へ変更することを強いられた。
  88. ^ なお、同じ1957年(昭和32年)に日立製作所がKL-10として全く同じコンセプト、かつ全く同じ構成の路面電車用空気ばね台車を製作、名古屋市交通局で実用試験を実施したが、こちらは試験結果は良好とされたものの、量産には至っていない。
  89. ^ 先行して日立製作所が1949年(昭和24年)にKL-1と称する金属ベローズ使用の試作空気ばね台車を製作、横浜市交通局が試用したが、金属ベローズの耐久性の問題からこれは実用化・量産されずに終わっている。
  90. ^ 京阪神急行電鉄→阪急電鉄(1973年〈昭和48年〉改称)で試験採用されたエコノミカルトラック各種については、保守の統一の問題もあって、以後振り替え等による淘汰が順次実施されており、2001年(平成13年)に除籍された2305用KS-65Aを最後に既に全数が廃却されている。
  91. ^ 特に2200系以降は後述する2600系を除き発電ブレーキ搭載で抵抗器の増量が必須であったことや、架線電圧昇圧準備で親子方式を標準としたため全電動車に主制御器を搭載する必要が生じて機構が複雑化しており、機器艤装スペースの捻出は重要課題であった。また、2000系の車体を流用して代替新造された昇圧即応車の2600系では界磁添加励磁制御の採用や、編成自由度の確保の必要(当初計画の段階では編成分割を実施して出町柳から叡山電鉄線へ直通することが想定され、同線の急勾配区間に対する特別な対策まで考慮されていた)から単独電動車方式(1M方式)としたことなどの事情により機器艤装スペースの確保には特に困難が生じた。そのため、コンパクトなエコノミカルトラックは台車振り替えを実施して大半が電動車に装着されている。
  92. ^ 1969年11月から1970年11月までの1年間、2200系2358の第2台車として1基の長期実用試験を実施。
  93. ^ 京阪本線用在籍車の18.2 %に相当する。なお、制御車・付随車用は10両分で、残る129両分は電動車に装着されている。
  94. ^ 国鉄では軸箱の緩衝材に防振ゴムブロックを使用。
  95. ^ 荷物車のスニ40/41と郵便車のスユ44は用途記号の上では客車(旅客車)に分類されているが、車体構造は貨車を基本としている。
  96. ^ 初代は同社が1931年に自主開発した航空機の「パイオニア」、2代目は1934年シカゴ・バーリントン・クインシー鉄道向けに生産した軽量高速気動車の「パイオニア・ゼファー」で、いずれも同社におけるステンレス材の加工および組み立て技術の開発において重要な意味を持つ製品である。
  97. ^ なお、この台車の基本設計については1959年10月成立のアメリカ特許No.2908230 “Railway Car Track”としてバッド社のウォルター・ディーン(Walter B. Dean)名義で特許が成立している。
  98. ^ もっとも、実際には台車枠が左右で分割され、しかも中心ピンで結合される構造であるため、台車そのものの組み立て時と台車に車体を載せる際には、通常の台車にない手間を要するデリケートな台車であったとされる。また、軌道が貧弱であった当時の京王帝都電鉄井の頭線では、踏面ブレーキを持たないために踏面が清掃されないことによる軌道回路の短絡不良や主電動機の整流不良が多発し、電動車用としては不適と判定された。
  99. ^ 例えば枕梁を廃止したボルスタレス台車の国鉄DT50でも自重6.5 t、従来構造の国鉄DT33などでは9 t近い自重であったことと比して、この台車の軽量ぶりは際立っている。
  100. ^ たまたま渡米した際に実見した汽車製造の高田隆雄の助言に従い、この改造を行ったという。
  101. ^ 中期以降設計のグループでは、防振ゴムの厚さを増してびびり振動を克服している。
  102. ^ 日立製作所HS-833Irbおよび東洋電機製造TDK-841-A1。いずれも1時間定格出力110 kW。中空軸平行カルダン駆動方式を採用した直流複巻補極補償巻線付整流子電動機。
  103. ^ もっとも、パイオニアIII台車装着車では1962年12月に第一陣が竣工した南海電気鉄道6000系において、PIII-702に端子電圧300V時1時間定格出力115 kW(端子電圧375V時1時間定格出力145 kW)と東急7200系よりも遙かに大容量の直巻整流子電動機である三菱電機MB-3072-Bを、それも狭軌ではバックゲージ面で東急が採用していた中空軸平行カルダン駆動方式と比較して遙かに厳しいWNドライブを駆動装置として搭載している。
  104. ^ ただし、電動車用ではなく自重が軽いことと、電動車に搭載された電力回生ブレーキを有効活用する目的もあって、機械式ブレーキの負担力の配分が変更された。そのため7000系用TS-701 (PIII-701) で特徴的であった、側梁外側に車軸を突き出して各軸2基ずつ搭載されていたディスクブレーキは、車輪間の1基のみに簡素化され、これによって7000系で問題であったボルスタアンカーの台車枠側作用点の高さ引き下げを実現している。
  105. ^ なお、事故当時小田急電鉄で運輸計画を担当していた生方良雄は、後年の雑誌座談会で「どちらかというとばねの固い1800形のDT13台車とニーアクション(枕ばね)の柔らかい4000形のパイオニア台車の相性が悪かったのが真実だと思います」と述懐している。
  106. ^ なお、この側梁緩衝ゴム式軸箱支持機構そのものは、1934年にアメリカの軸受メーカー、シミントン社(Symington-Gould Corporation)のドナルド・バロウズ(Donald S. Barrows)が申請し1940年に取得したアメリカ特許No.2207848で同種の構造が示されている。
  107. ^ このFS337系をダイレクトマウント構造へ設計変更した特急用の初代3000系が装着するFS381・FS381Bは、軸ばねを備える側梁緩衝ゴム式台車であるが、先代特急車である1900系が装着する汽車製造KS-70や住友金属工業FS347といった台車と比較して乗り心地が良くないという評価があった。そのため、3000系の淘汰時にはシンドラー式円筒案内台車であるKS-132・KS-132Aが車体の適合の問題から川崎重工業で枕ばね部を大改造されたもののKW-79として10両分が転用されたのに対し、こちらのFS381系は全数が廃却対象となっている。
  108. ^ 大阪市交通局での局内形式はCS-55。
  109. ^ 台車枠全体の新製交換が実施されたため、実質的には代替新造であった。
  110. ^ Zリンクの作用により旋回運動の中心軸の位置が定まることから、これを心皿中心に見立てて仮想心皿方式と呼ぶ。
  111. ^ 同系列のデータを元に開発された国鉄キハ181系気動車および国鉄キハ65形気動車にも同系の台車が採用されている。もっともそれらに続いて設計され、やはり2軸駆動方式を採用する国鉄キハ66系気動車では枕梁に貫通穴を設けることで推進軸の干渉をクリアし、通常の枕梁と心皿を用いる方式に逆戻りしている。
  112. ^ ダイレクトマウント台車自体は、1960年代前半の段階でベローズ式空気ばねを使用することで既に実用化されていた。
  113. ^ もっとも、1960年に成立したフランス特許No.1066650A(アメリカ特許No.3121402)などでは、案内リンクと前後からのアンカーによる牽引機構を組み合わせたボルスタレス構造が図示されており、仮想心皿方式の発祥国であるフランスでは早い時期からこの方式の検討が行われていたことがわかる。
  114. ^ この軽量化は後述するように高速鉄道用台車において特に大きな効果を発揮する。
  115. ^ 2車体で1-B+1+B-1となるように車軸を構成する。つまり、両端の各1軸と中央の連接台車の1軸が走向の案内を行い、それぞれの間に置かれた2軸動台車で駆動を行う構成である。このレイアウトは川崎重工業と札幌市交通局が共同で開発した第4次試験車「すずかけ」(1967年製。札苗試験場にて試験を実施)での実績を踏まえて採用されたもので、3軸車であった第3次試験車「はるにれ」(1965年製)が中央軸のみを駆動軸とし、前後の各1軸を走向案内に用いる3軸車であったのを拡大した結果誕生したものであった。これは結果的にボルスタレス構造となったが、積極的に意図してのものとは言い難い。もっとも、札幌市ではその線路構造の特殊性もあって、初の2軸ボギー車となった1975年6000形電車用川崎重工業KW-102をはじめ、地下鉄電車の台車は全てボルスタレス構造となっている。
  116. ^ X9968Aはコイルばねと上下2枚の板ばねによるS形ミンデンドイツ式、X9968Bはコイルばねと緩衝ゴムによる緩衝ゴム式、と比較のために異なった軸箱支持機構を備え、台上試験の後、1977年11月に営団地下鉄の協力で東西線5000系に装着して走行試験が行われた。
  117. ^ 軸箱支持機構に積層ゴムを用いるシェブロン式台車で、同じ軸箱支持機構を採用し、ダイレクトマウント式の枕ばね部を備えるKW-24と共に京阪電気鉄道にて同社の3000系に装着して走行試験が行われた。
  118. ^ 1979年7月から1981年5月にかけて帝都高速度交通営団東西線5000系5345号車で長期実用試験を行った。
  119. ^ MAN社によって1970年代後半に開発された。ドイツ連邦では1978年11月24日にNo.2850878として特許が成立(アメリカ特許No.4357879)している。
  120. ^ 日本で住友金属工業によって独自開発された。
  121. ^ 国鉄がボルスタレス台車の試作を行ったのは先述のTR908(振り子式。1982年設計)とそれに続くTR911(非振り子式。日本車輌製造・東急車輛製造製。1983年設計)が最初で、特殊な制約の下でのものであったとはいえ気動車用仮想心皿台車の開発では10年先行していたにもかかわらず、私鉄各社での初動から5年以上遅れる結果となった。なお後者のTR911は1984年3月に東海道本線上で113系電車に装着されて走行試験が実施され、DT50の開発に貴重な資料を提供している。
  122. ^ 空気ばねの採用による乗り心地の改善が改善した。また電動機が整流子の保守が不要のインバーター制御の誘導電動機とすることによる軽量化も同時に進行した。これらが相まって、同じ空気ばね台車である従来のDT32やDT46と比較して1基あたり1 t以上(主要な置き換え対象車両に装着されていたコイルばね台車であるDT33との比較では約2.5 t)の軽量化による軌道の負担軽減、つまり軌道保守コストの低減効果は絶大と言って良い水準に達していた。 一般的な20 m級車の場合、通常の鋼製車体に代えてアルミ車体を採用することで概ね4 - 5 t前後、軽量ステンレス構造で3 - 4 t程度の軽量化が実現されるから、部品点数の削減による製造・保守費の低減と合わせて従来台車比で1両あたり2 tから3 tもの軽量化を、それも軌道破壊に対する影響の大きい台車ばね間質量の削減という形で実現されるボルスタレス台車のもたらすメリットは絶大である。 また、このDT50の派生形式各種は高速走行性能が良好で、例えばJR西日本221系電車に装着された派生形式であるWDT50H・WTR235Hは、ヨーダンパ無しの標準状態(後に追加搭載された)で120 km/h運転を実施しているが、新造直後に湖西線で実施された性能試験の際には軸箱支持機構や枕ばねには特に手を入れず、JR北海道785系電車用N-DT785やJR東日本651系電車用DT56などの本台車の後で設計された130 km/h運転に対応する同系台車と同様にヨーダンパを追加しブレーキ系を強化することで160 km/hの速度記録を達成している。
  123. ^ ヨーダンパの装着は一般に新幹線を含む120 km/h以上の運転を想定した車両に対して実施されるが、これが装備されていない最高速度120 km/h以下の車両でも乗り心地が十分でないケースがあり、例えばJR西日本221系では製造後約10年が経過した1998年以降、追加でヨーダンパを設置している。またJR九州の811系電車および813系電車は最高速度120km/hだが臨時急行列車用途を想定したためヨーダンパが設置されている
  124. ^ SS102は牽引装置などの機構設計にSS101を踏襲しつつ、当時の阪急で標準台車であった住友金属工業FS369A・FS069Aと共通の板ばねによるSUミンデン式軸箱支持機構を採用し、摩耗部品類についての互換性を最重視して設計されている。
  125. ^ 7012以下8両1編成分のSS102系台車は2008年12月に、全数が5200系からの廃車発生品であるFS369Aと交換されて淘汰された。
  126. ^ 特に川島は事故前まで著書内でJR西日本のダイヤや営業方針を過度に賞賛していたため、その責任逃れとしてこのような主張をしているという見方もある。
  127. ^ 新幹線向けでは、在来線向けDT50の量産開始と同じ1985年に試作されたDT9023A・Bを筆頭とするDT9023系などの試作台車による長期試験を経て、1990年に設計された新幹線300系電車用TDT203以降に設計された、すべての新型台車にこの方式が採用されている。
  128. ^ 特に新幹線においては半径の小さな曲線区間が無いこと、また高速走行時の振動や蛇行動を抑えるために台車に軸ダンパー、ヨーダンパー、左右動ダンパー、上下動ダンパー、また車両間にロールダンパーやヨーダンパー等を装備していることもあり、ボルスタを備える従来方式の台車と比較して蛇行動、曲線通過時の横圧の低減、振動特性などが同等以上で保守性において優れるとしている。
  129. ^ 例えば、急勾配と急曲線の双方が同一区間に併存する箱根登山鉄道鉄道線など。
  130. ^ この構造の採用は、後年の「タルゴIII-RD」での軌間可変機構の実現にあたって、大きな役割を果たすこととなる。
  131. ^ 鉄道技術研究所によりこの機能を組み込んだRT-X1と称する試作台車が設計され、1989年に東急車両製造によって製作された。なお、この台車はKS-68と同様にディファレンシャルギアによる動力伝達機構を備えており、気動車用の動力台車として利用可能な構造であった。
  132. ^ もっとも、この種の台車は総じて長軸距を実現する手段としてラジアル機構を導入していたため、この機構をロックすることで、フランジ摩耗の増大は避けられなかった。つまり、ラジアル機構を使う、使わないのいずれにしても問題が生じたのである。
  133. ^ この種のラジアル台車と同様の機構を2軸ボギー台車に援用するアイデアそのものは、Walter Youmansによって1867年に特許(U.S. Patent No.70492)が取得されており、古くから存在した。なお、シッフェルは鉄道車両用台車について幾つもの合衆国特許を取得しているが、これらの中には簡潔なメカニズムによる自己操舵台車(U.S. Patent No.4151801)の他、ラジアル台車以来、自己操舵台車で問題となってきた軸箱支持機構部分の改良を目的としたもの(U.S. Patent No.4067261など)が含まれる。
  134. ^ TS-302は両端の動力台車で東横線デハ5000形用TS-301と同じノースイングハンガー、かつインサイドフレーム構造の2軸ボギー台車、TS-501は連接部の付随台車で双方の車体からのリンク機構により操舵される1軸台車、となっており、この特徴的な構造の付随台車から、「和製タルゴ」というあだ名も付けられた。平行カルダン駆動を採用した東洋電機製造製主電動機の最大寸法は300 mm、と当時の技術では極限に近いダウンサイジングを行っている。なお、これらの台車に使用する車輪は、その小直径故に既製品が存在しないため、タイヤ部を含めて一体の特殊鋳鋼製車輪を装着した。当時、東急車輛製造本社工場内にはその前身である海軍工廠時代から継承された、高度な技術力を誇る鋳物工場があり、国鉄技術研究所の指導を受けつつではあったが、自社でこの特殊車輪の量産を実施できた。言い換えれば、この車輪の量産の目処が立ったからこそ、デハ200形は日の目を見たのである。また、ブレーキについても動力台車はスペースの問題もあってか各車軸間の側枠の外に通常の片押し式ブレーキを搭載するが、中間台車については1軸で充分なブレーキ力を確保する目的でドラムブレーキを採用している。
  135. ^ 後の新玉川線の建設計画もあり、デハ200形に続いて玉川線に導入された新造車は、通常構造のデハ150形となった。
  136. ^ つまり、車両側はステップを撤去して対応しており、低床化策は講じられていない。
  137. ^ なお、この台車の枕ばねは動軸寄りにシフトして配置されており、一種の偏心台車と見ることもできる。
  138. ^ アルナ車両川崎重工業近畿車輛三菱重工業東洋電機製造東芝日本車輌製造ナブコの各社。
  139. ^ 軌間の問題もさることながら、台車上部で800 mmの通路幅確保も至上命令の一つであった。
  140. ^ 当初より存続期間を3年と区切っていた。
  141. ^ 「2輪独立車輪方式ステアリング方式」のタイプA、「4輪独立車輪方式(ギア付きMM方式)」のタイプB、「4輪独立駆動方式(DDM方式)」のタイプCの3種。
  142. ^ 電動車は880 mm。

出典

  1. ^ 鉄道旅行の歴史 1982, pp. 34–42.
  2. ^ a b 鉄道旅行の歴史 1982, pp. 92–93.
  3. ^ 鉄道旅行の歴史 1982, pp. 121–124.
  4. ^ 鉄道旅行の歴史 1982, pp. 121–125.
  5. ^ 鉄道旅行の歴史 1982, pp. 125–127.
  6. ^ レイル No.16 1985, pp. 80–82.
  7. ^ 世界の鉄道'71 1970, p. 119.
  8. ^ 世界の鉄道'71 1970, pp. 123–124.
  9. ^ 『西尾源太郎「いよいよ営業開始したアメリカの新幹線メトロライナー」、『鉄道ファン Vol.9 No.96 1969年6月号』、交友社、1969年、pp.38-41
  10. ^ 鉄道技術140年のあゆみ 2012, p. 166.
  11. ^ a b c d 車両用空気ばね 1957, pp. 908–909.
  12. ^ 鉄道ピクトリアル臨時増刊号 通巻No.695 2000, p. 206.
  13. ^ 鉄道ピクトリアル 通巻No.637 1997, p. 11.
  14. ^ 鉄道ピクトリアル臨時増刊号 通巻No.822 2009, pp. 116–117.
  15. ^ 鉄道ピクトリアル臨時増刊号 通巻No.822 2009, pp. 274–285.
  16. ^ 鉄道ファン 通巻No.589 2010, p. 107.
  17. ^ 鉄道ピクトリアル アーカイブスセレクション15 7000形見たり・聞いたり 2008, pp. 123–125.
  18. ^ 鉄道ピクトリアル アーカイブスセレクション15 東急のダイヤ改正と7200形新製車 2008, pp. 72–73.
  19. ^ 鉄道ピクトリアル アーカイブスセレクション2 小田急電鉄 1960~1970 2002, pp. 17–18.
  20. ^ 鉄道車両のダイナミクス 1996, p. 253.
  21. ^ 『鉄道ピクトリアル No.585』、pp.83 - 87
  22. ^ 帝都高速度交通営団日比谷線中目黒駅構内列車脱線衝突事故に関する調査報告書 事故調査検討会
  23. ^ 鉄道事故調査報告書 II 九州旅客鉄道株式会社 鹿児島線 鹿児島中央駅構内 列車脱線事故 運輸安全委員会
  24. ^ 『鉄道ピクトリアル No.711』 pp.71 - 73
  25. ^ 山口益生『阪急電車』JTBパブリッシング、2012年、217-218頁。ISBN 9784533086984 
  26. ^ 京成電鉄,新型「スカイライナー」は急曲線通過と160 km/h運転を両立 - 産業機器・部材 - Tech-On!
  27. ^ 『鉄道ピクトリアル No.819』2009年3月臨時増刊号 P.53・301





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「鉄道車両の台車史」の関連用語

鉄道車両の台車史のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



鉄道車両の台車史のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの鉄道車両の台車史 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS