あっしゅくき 圧縮機 compressor
圧縮機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/18 20:42 UTC 版)
圧縮機(あっしゅくき)とは羽根車若しくはロータの回転運動又はピストンの往復運動によって気体や液体などの流体を圧送する機械のことである[1]。コンプレッサーともいう。有効吐出し圧力が200 kPa以下の圧縮機をブロワという。尚、改正前のJIS定義では圧力比によって送風機・圧縮機を分類していたが、ISOなどの国際規格との整合性を保つため2005年(平成17年)に改正された[2]。これにより送風機扱いであったブロワが圧縮機となり、送風機とファンが同義となった。
- 1 圧縮機とは
- 2 圧縮機の概要
圧縮機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/12 15:07 UTC 版)
吸気口を通過した空気は燃焼室へ送り込まれる前に圧縮機により加圧される。初期のジェットエンジンの圧縮率は大気圧の数倍という小さいものであったが、F-15に搭載されているF100では約30倍、ボーイング777に搭載されているGE90では約40倍という高圧を生み出している。ジェットエンジンに使われる圧縮機には遠心圧縮式と軸流圧縮式の2種類がある。通常、圧縮機は複数設けられ、その数は「段数」で数えられる。また、軸流圧縮機の後段に遠心圧縮機が設置されるような場合もある。 遠心圧縮式 (centrifugal compressor) 詳細は「遠心式圧縮機」を参照 流入空気を羽根車(インペラー、impeller)によってエンジン回転軸の遠心方向に90°偏向させ、その遠心力と圧縮機出口に設置されたディフューザーで空気の速度エネルギーを圧力エネルギーに変換することで空気圧力を高める方式である(インペラーとディフューザーの組を1段と数える)。その後高められた加圧空気はマニホールドから燃焼室に送られる。製作が容易で安価であり、構造が簡単で1段当りの圧力比が高く、比較的効率が高い、丈夫で異物の吸入に強い、安全運転範囲が広い、回転数がある程度変動しても効率が落ちないといった利点があり、小出力ならば軸流圧縮式に比べて軽量化が可能である。このような特徴からオハインやホイットルが製作した初期のターボジェットはこのタイプの圧縮機を使用している。ただし、軸流式と組み合わせなければ段数を増やすことが難しく、圧縮比を大きくするためにインペラーの直径を増すと前面投影面積が大きくなる(機体に搭載した場合空気抵抗が増加する)という欠点を持つ。したがって今日の航空機用大推力エンジンにはほとんど用いられない。しかしながら、中型輸送機用ターボプロップや中・小型ヘリコプター用ターボシャフトなどの比較的低出力のエンジンには、その構造の単純さ故に今なお使われている(その場合、軸流式との組み合わせであることも多い)。また、ホンダジェットに搭載されたターボファンエンジンHF120の高圧圧縮機(最終段の圧縮機)にもチタン合金製の遠心式圧縮機が使用されている。ちなみに航空用レシプロエンジンのスーパーチャージャーもインペラーとディフューザーを備える遠心圧縮式である。 軸流圧縮式 (axial compressor) 詳細は「軸流式圧縮機」を参照 軸流圧縮機は回転軸と平行方向に空気流路を持つ圧縮機である。大きくわけて、圧縮機ロータ(Compressor Rotor)と圧縮機ステータ(Compressor Stator)の2つの主要部品から構成されている。圧縮機ロータと圧縮機ステータはそれぞれの各段の動翼と静翼が交互になるように設置されており、軸方向の後方に進むにつれて、通路断面積が小さくなっている。また、軸流圧縮機では一列の動翼と一列の静翼の組み合わせを段(Stage)と呼んでおり、これがいくつあるかで「段数」と呼んでいる。流入空気は圧縮機ローターが回転することで動翼と静翼によって空気流の拡散作用により空気圧力の増加が得られて、何段もの動翼と静翼を通過させることで次第に体積が減少して高圧となっていくが、拡散作用で減少した流入空気の速度は回転する動翼により回復するようになっている。大量の空気が処理できること、圧縮機の効率が高く多段化が容易であるため高圧力比を得られる、エンジン直径を小さくすることができる利点があるが、構造が複雑で製作費が高く、異物の吸入で動翼や静翼が損傷を受けるほか、圧力比が回転数と流入空気温度の変化で大きく影響を受ける欠点を持つ。これは、軸流圧縮機の空気流路断面積が圧縮機効率が最高となる設計点に合わせて固定されているためである。動翼(ブレード)と静翼(ベーン)の製作にはコストがかかり、特に動翼はディスクに片端支持のみで固定されるため加工精度いかんでブレードによるフラッターを起こしやすいという欠点がある。このフラッターは静翼の角度を調節することである程度まで対応できるが、回転数は限られる。近年の大型、高出力ターボジェット、ターボファン、ターボシャフトのほとんどはこの軸流圧縮式を用いている。小型のものでは圧縮機の後段の動翼・静翼が小さくなり製造が困難となる。加工精度も高いものでないと空力的悪影響を引き起こし、設計時に想定した要求性能を到達させるのが困難なので、最終段のみ遠心式とする場合もある。 圧縮機ロータは、円盤状のディスク(Compressor Disk)の円周に動翼(Rotor Blade)を取り付けたブレード・アンド・ディスク(Blade and Disk)を回転軸方向に何段も重ねて一体化させたものであり、構造としては、ブレード・アンド・ディスクをスペーサー(Spacer)を使用して重ね合わせた後に、タイロッド(Tie-rod)とハブ(Hub)とで一緒に結合した構造が一般的であり、ブレード・アンド・ディスクとスペーサーを一体構造とし、タイロッドを使用せずに、ボルトを使用して結合した構造のウイング・ディスク(Wing Disk)や何段ものディスクとスペーサーを一体化して、それに動翼を取り付けた構造のドラム・ローター(Drum Rotor)がある。 圧縮機ステータは、圧縮機外側ケースに静翼(Stator Vane)と静翼の支持構造を回転軸方向に何段も重ねて取り付けたものであり、静翼の支持構造としては、固定式ステータ・ベーン構造と可変式ステータ・ベーン構造の2つがある。固定式ステータ・ベーン構造とは、内側はインナ・シュラウド(Inner Shroud)と外側はアウタ・シュラウド(Outer Shroud)と呼ぶ大小2つのリングの間に固定された静翼を取り付けたベーン・アンド・シュラウド(Vane and Shroud)と呼ばれる構造を、圧縮機外側ケースの内面にロータ回転軸方向に何段も取り付けられている。可変式ステータ・ベーン構造とは、内側の支持リンクと外側の圧縮機外側ケースとの間に回転軸を取り付けた静翼があり、回転軸は、圧縮機外側ケースに設けられた孔を介して外部に取り付けられた作動アームと作動リンクで構成された可変ベーン機構と繋がっており、それにより静翼を動かす構造であり、それがロータ回転軸方向に何段も取り付けてられており、エンジンの回転数に応じて可変ベーン機構により静翼の取り付け角度が変わるようになっている。これは、軸流圧縮機において圧力比を高めるためには、段数を増やす必要があるのだが、段数を増やすと安全運転範囲が狭くなり、ストールと呼ばれる動翼の失速現象が頻繁に発生して、始動性や加速性が低下するためであり、軸流式圧縮機の前段部の数段を可変式ステータ・ベーン構造にすることで、ストールを防止するとともに、圧力比をより高めることができる。ほかにも、ストールを防止や圧力比をより高める方法としては、タービンで圧縮機を駆動する1軸式から低圧タービンで低圧圧縮機を駆動し、高圧タービンで高圧圧縮機を駆動する2軸式とした多軸エンジンの採用や、軸流圧縮機の中段や後段部に抽気弁を取り付け、それが始動時や低出力運転時に自動的に開いて、圧縮された空気がこの弁を介して外気に放出されることでストールを防止する抽気がある。また、圧縮機の高圧部から取り出した抽気の空気(ブリードエア)は、防氷や空調、燃焼室に直接火炎が触れることを防いだり、タービンなどの冷却に利用される。
※この「圧縮機」の解説は、「ジェットエンジン」の解説の一部です。
「圧縮機」を含む「ジェットエンジン」の記事については、「ジェットエンジン」の概要を参照ください。
圧縮機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/10 06:54 UTC 版)
圧縮機内部構造は、インペラーを貫通し駆動するシャフト、密閉式の場合は増速ギア (もしくは減速ギア)、開放式の場合はメカニカルシール、インペラーの吸い込み効率を上げるラビリンスシール、圧縮効率を上げるラビリンスシール、インペラーにより冷媒に与えられた速度エネルギーを圧力エネルギに変換するディフューザー、軸受け、容量制御の為の吸い込みベーンで構成される。圧縮機には遠心式圧縮機を採用している事から1 - 6段型まで利用され冷媒、利用する温度により形態が異なる。 単段型 インペラーが1枚となる圧縮機である。単段型の場合大きな圧縮比を取る事は、圧縮機サイズの制限や回転数の制限等により難しくなる事と、遠心式圧縮機の特性として、風量と圧縮比が反比例関係に有ることから比較的小さな冷凍能力となるユニットに採用される。 多段型 インペラーが複数枚採用される圧縮機構造である。インペラー一枚あたりの圧縮比が小さく出来る事で、大きな風量でも圧縮比を適正に取る事が出来る。また、逆に風量が少なく大きな圧縮比が必要な場合(低温取り出し、高温取り出し、冷媒ガス物性として等)にも採用される。
※この「圧縮機」の解説は、「遠心冷凍機」の解説の一部です。
「圧縮機」を含む「遠心冷凍機」の記事については、「遠心冷凍機」の概要を参照ください。
圧縮機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/24 00:33 UTC 版)
「ターボプロップエンジン」の記事における「圧縮機」の解説
現代的なターボジェット/ターボファンエンジンの多くは軸流式圧縮機を使用しているが、小型化への要求が大きいターボプロップエンジンでは、(少なくとも)1段の遠心式圧縮機を含む、軸流式 - 遠心式の複合型となっていることが多い。
※この「圧縮機」の解説は、「ターボプロップエンジン」の解説の一部です。
「圧縮機」を含む「ターボプロップエンジン」の記事については、「ターボプロップエンジン」の概要を参照ください。
圧縮機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/24 15:50 UTC 版)
「クランク (機械要素)」の記事における「圧縮機」の解説
容積圧縮型のレシプロ圧縮機は、クランクシャフトを電動機やエンジンで回し、その回転運動をピストンの往復運動に変換して気体を圧縮する。
※この「圧縮機」の解説は、「クランク (機械要素)」の解説の一部です。
「圧縮機」を含む「クランク (機械要素)」の記事については、「クランク (機械要素)」の概要を参照ください。
圧縮機
「圧縮機」の例文・使い方・用例・文例
圧縮機と同じ種類の言葉
- 圧縮機のページへのリンク