空気抵抗
自動車が走行するときに受ける空気による抵抗をいい、その大きさは空気抵抗係数CD・Aで表す(Aは前面投影面積)。高速走行機会の増大や燃費対策として空気抵抗低減の重要性はますます高まり、車体形状の研究と車体表面のフラッシュサーフェイス化が進められている。
空気抵抗
抗力
(空気抵抗 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/09/13 02:10 UTC 版)
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2011年6月)
|

抗力(こうりょく、英: drag)とは、流体(液体や気体)中を移動する、あるいは流れの中におかれた物体にはたらく力の、流れの速度に平行な方向で同じ向きの成分(分力)である。流れの速度方向に垂直な成分は揚力という。
追い風で水面をかき分けて進んでいる帆船は、空気から進行方向の抗力を、逆方向の抗力を水から受けている。また、レーシングカー等ではマイナスの揚力でダウンフォースを発生させている。抗力も揚力もケースバイケースで、その方向が字義通りではない場合がある。
数学的表現
抗力は物体の相似比の2乗(あるいは投影面積)に比例する。また、レイノルズ数が小さいときは速度に、大きいときは流体の密度と流速の2乗に比例し[1]、後述する抗力係数 CD を用いて以下のような数式モデルで表されるのが一般的である。このモデルは係数が異なるだけで揚力と同形式である。
-
誘導抗力発生の原理: 図は翼周りの流れ場を a は前方、b は左翼側から見ている(非粘性流れを想定)。1. 翼端渦, 2. 吹き下ろし, 3. 気流, 4. 吹き下ろしによる下向きの気流, 5. 下向きの気流により発生した揚力, 6. 気流により発生した揚力(いわゆる揚力), 7. 誘導抗力 - 翼端を持つ三次元翼(つまり、一般の翼)において、揚力の発生に伴って発生する抗力。
- 無限翼(二次元翼)に気流が翼に当たった場合には、翼を通過した気流は当たる前の同じ方向に流れ、揚力は流れる気流に対して垂直に発生する。ところが翼端を持つ三次元翼は、翼上面はベルヌーイの定理により翼下面よりも圧力が低くなっているため、翼端では下から上へと回り込む渦(翼端渦)が発生している。この渦の持つ下向きの速度(吹き下ろし downwash)によって、気流が翼に当たった場合には、翼を通過した気流は下向きに傾いて流れる。これにより、流れる気流に垂直に対して発生する揚力は下流方向に傾くことになり、その傾いた分が誘導抗力となる。また、翼によって下向きに傾かれた気流により、翼と下向きに傾かれた気流とのなす角度の迎角が発生するため、これを誘導迎角と呼んでいる。[3][4].
- 主翼がより細長く、つまりアスペクト比が大きくなる(二次元翼に近づく)につれて、翼全体に対して翼端が占める割合は小さくなり、吹き下ろしの影響も小さくなる。したがって、誘導抗力を低減することができる。亜音速の飛翔体では、十分に流線形をしている限り圧力抗力は小さく、一方で摩擦抗力の大幅な低減は難しい。そこで、誘導抗力を減らすためにアスペクト比 (AR) を大きく(翼を細長く)する努力が払われることが多い。この極端な例がルータン ボイジャーやヘリオス、あるいはグライダーや人力飛行機といった機体であり、AR = 40 近いものまで存在する。
- 主翼において誘導抗力は主翼の抗力の1つとなるため、主翼翼端にウィングレットを取り付けて、主翼の翼端で発生する翼端渦を抑えることで誘導抗力を減らし抗力を減少させることができる。
- 有害抗力(parastic drag, parasite drag)
- 揚力の有無には無関係に存在する抗力。干渉抗力と形状抗力とに大別される。
- 造波抗力(wave drag)
- 衝撃波による抗力。
力の向きによる分類
- 摩擦抗力
-
物体表面に沿った力に起因する抗力。粘性抵抗とも呼ばれる。せん断力による形状抗力に等しい。半径
脚注
- ^ 望月修; 市川誠司『生物から学ぶ流体力学』養賢堂、2010年、63頁。ISBN 978-4-8425-0474-2。
- ^ 牛山泉『風車工学入門』(2版)森北出版、2013年、50頁。 ISBN 978-4-627-94652-1。
- ^ 東昭『流体力学』朝倉書店、1993年、pp. 103-104頁。 ISBN 4-254-23623-9。
- ^ Anderson, Jr., John D. (2001). Fundamentals of Aerodynamics, 3rd International ed.. New York: McGraw-Hill. pp. pp. 354-355. ISBN 0-07-118146-6
関連項目
空気抵抗
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/01/06 06:03 UTC 版)
特に高速移動を前提とする場合には、空気抵抗は速度の二乗に比例して増大するため、大きな問題となる。このため車両デザインには空力的に洗練されたものが要求される。スイスメトロのような一部の構想では減圧されたトンネル内を走行する。 中華人民共和国では、アメリカ合衆国の技術を元に、真空状態のチューブ内でリニアモーターカーを走行させる研究をすすめると言うが、純粋な旅客輸送用として以外に、宇宙開発や軍事転用の可能性もある
※この「空気抵抗」の解説は、「磁気浮上式鉄道」の解説の一部です。
「空気抵抗」を含む「磁気浮上式鉄道」の記事については、「磁気浮上式鉄道」の概要を参照ください。
「空気抵抗」の例文・使い方・用例・文例
- 空気抵抗のページへのリンク