藍藻 生態

藍藻

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/03/21 15:45 UTC 版)

生態

海水(海洋、沿岸)や淡水(河川、湖沼)中に多いが、砂漠も含めた陸上で増殖するものや動物や植物と共生するものもあり、地球上で非常に広く分布している[4]

夏場に淡水で発生するアオコのなかには藍色細菌が大量に発生した結果引き起こされるものもある。この中には悪臭の原因になったり毒性を持つ種も含まれる。海水に広く分布し、地球の光合成生産に大きな貢献をしている。海洋性のシネココッカス Synechococcus やプロクロロコッカス Prochlorococcus は、とくに暖かい海に多い。1988年に発見されたプロクロロコッカスは地球上でもっとも多い光合成生物といわれている。赤潮を起こす種類(Trichodesmium など)もある。

ネンジュモ属のイシクラゲなどは湿った地上に、キクラゲのような姿で発生する。食用にすることもできる。この仲間は乾燥耐性が強く、何十年も乾燥状態で休眠できるものがいる。また、砂漠の砂土の表面でも増殖し、表土を固定する役割を果たしている。

温泉には、好熱性の種が生息している。知られているもっとも高い増殖温度は73℃という。また、南極や北極海でも生息が知られている。

一部の種は他の生物と共生している。アナベナはアカウキクサの葉に、ネンジュモ類はソテツツノゴケ類の配偶体などに共生して、窒素固定産物を供給している。また菌類と共生して地衣類を形成するものもある。1975年に発見されたプロクロロン Prochloronホヤと共生しており[5]、単独の培養はまだ成功していない。

系統

かつて植物全体が単系統と考えられていた時代には、もっとも単純な藻類と考えられた。しかし、分類学の発展から原核・真核の区別が重視されるようになると、これが別の界(あるいはドメイン)におかれるようになった。また、細胞内共生説からは藍色細菌は真核藻類の祖先型ではなく、それらが持つ葉緑体の起源であると考えられるようになり、細胞本体に関しては系統上の連続性は認められなくなった。

葉緑体のリボソームRNA塩基配列は単系統を示し、さらに藍色細菌の系統樹の中に含まれる。これは、植物や二次共生藻類のすべての葉緑体の直接の祖先が藍色細菌であること、さらに葉緑体を生じた細胞内共生が1回だけ起きたという仮説を支持している。藍色細菌の系統樹によれば、もっとも古く分岐したのは、チラコイド膜をもたない Gloeobacter violaceus である。また、クロロフィルbをもつプロクロロンやプロクロロコッカスなどは藍色細菌の系統樹内に散在している。これはクロロフィルbをもつ藍色細菌(元は原核緑藻とも呼ばれた)の出現が進化の中で比較的新しいことを示唆している。

このような経過によって、細菌の一群であることを明確にするため、藍色細菌やシアノバクテリアの呼称が使われるようになった。細胞壁に外膜があり、グラム染色性陰性菌ということになるが、大腸菌などを含むプロテオバクテリアとは門レベルで異なる独立した系統を形成している。酸素非発生型の光合成細菌の光合成装置としては、光化学系Iに似た鉄硫黄クラスター型のものと、光化学系IIに似たキノン型が存在しているが、一つの種にはどちらか一方しか存在しない。したがって、藍色細菌の2種の光化学系は、2種類の酸素非発生型光合成細菌の融合(もしくは遺伝子の水平移動)によって生じたと考えられている。

起源

系統解析も行われているが、他の細菌と同様、研究者によって見解が分かれている。キャバリエ=スミスらはクロロフレクサス・デイノコッカス-サーマスが最も古くに分かれた系統であり、藍色細菌はその次に古いとしている[6]。グプタらの例ではグラム陽性菌が最も初期に分かれた系統で、次にクロロフレクサス、その後藍色細菌と他のグラム陰性菌が分かれたという[7]

2004年に提唱されたテッラバクテリアというクレードでは、藍色細菌がクロロフレクサス門グラム陽性菌デイノコックス・テルムス門に近いことを示している[8]

より藍色細菌に近縁な細菌として、メライナバクテリアなど藍色細菌門に近縁、あるいは綱レベルで藍色細菌門に含まれると考えられる系統も知られている。これらは光合成に必要な遺伝子を持たない。これらを含めた解析では、藍色細菌は他の細菌類から光合成に必要な遺伝子を獲得した形跡があり、光合成能を獲得したのは比較的後代(25-26億年前)になってからと推定されている[9][10]

最初の酸素発生型光合成生物?

しばらく前には、35億年前の化石とされるものが藍色細菌に似ていることから最古の光合成生物といわれたこともあったが、現在ではこれは認められていない。確かなストロマトライトの化石は27億年前のものである。これに対応して、地球大気の酸化的変化を示す縞状鉄鉱層が出現することも、このころ、酸素を発生するシア藍色細菌が既に出現していたことを窺わせる。

一方、細菌の16S_rRNA系統解析では緑色非硫黄細菌(クロロフレクサス)が光合成生物としてはもっとも初期に分岐したとされる。さらに光合成にかかわる遺伝子配列解析では、紅色細菌がもっとも初期に分岐したという報告もある。このような知見が重なるとともに、生物間での遺伝子の移動がしばしば起こる現象であることが明らかになってきた(遺伝子の水平伝播)。また、多くの光合成細菌の近縁には非光合成細菌が見つかることは、光合成機能が進化の過程で容易に失われることを示している。なお、藍色細菌門のなかには、非光合成の種はまだ見つかっていない。とにかく、現生物の系統から光合成の進化を議論するには注意が必要であると認識されるようになった。

2010年代以降、藍色細菌の近縁系統としてメライナバクテリアやML635J-21と呼ばれる非光合成細菌が知られてきており、酸素発生型光合成細菌の進化について注目を集めている[10]


  1. ^ Life History and Ecology of Cyanobacteria”. University of California Museum of Paleontology. 2018年10月2日閲覧。
  2. ^ Taxonomy Browser - Cyanobacteria”. National Center for Biotechnology Information. 2018年10月2日閲覧。
  3. ^ http://www.pasteur.fr/ip/easysite/go/03b-000012-00g/research/collections/crbip/general-informations-concerning-the-collections/iv-the-open-collections/iv-iii-pasteur-culture-collection-of-cyanobacteria
  4. ^ B.A. Whitton and M. Potts, eds (1999), The Ecology of Cyanobacteria, Kluwer Acaemic, ISBN 0-09-941464-3 
  5. ^ R.A. Lewin (1976). “Prochlorophyta as a proposed new division of algae”. Nature 261: 697-8. 
  6. ^ Cavalier-Smith T (2006). “Rooting the tree of life by transition analyses”. Biol. Direct 1: 19. doi:10.1186/1745-6150-1-19. PMC 1586193. PMID 16834776. http://www.biology-direct.com/content/1//19. 
  7. ^ Gupta, R. S. (2006年). “Phylogeny of Bacteria- Is it a Tangled Web or Can this be Reliably Resolved?” (英語). 2008年12月20日閲覧。
  8. ^ Battistuzzi FU, Hedges SB (2009). "A major clade of prokaryotes with ancient adaptations to life on land". Mol. Biol. Evol. 26 (2): 335–43. doi:10.1093/molbev/msn247. PMID 18988685. http://mbe.oxfordjournals.org/cgi/content/full/26/2/335.
  9. ^ Shih, P.M., et al. (2017). “Crown group Oxyphotobacteria postdate the rise of oxygen”. Geobiology. 15 (1). doi:10.1111/gbi.12200. PMID 27392323. 
  10. ^ a b Soo, R.M., et al. (2017). “On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria”. Science 355 (6332): 1436-1440. doi:10.1126/science.aal3794. 
  11. ^ http://genome.kazusa.or.jp/cyanobase/
  12. ^ 渡辺真利代; 原田健一; 藤木博太編 『アオコ ― その出現と毒素』 東京大学出版会、1994年、257頁。ISBN 4-13-066152-3 
  13. ^ Jensen, Gitte S.; Ginsberg, Donald I.; Drapeau, Christian (Winter 2001). “Blue-Green Algae as an Immuno-Enhancer and Biomodulator”. JANA 3 (4): 24–30. 





固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「藍藻」の関連用語

藍藻のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



藍藻のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの藍藻 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2019 Weblio RSS