気体 気体の概要

気体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/01 02:34 UTC 版)

概要

気体というのは、物質の集合状態のひとつであり[2]、圧縮やズレに対する抵抗が小さく、膨張に対してはまったく抵抗を示すことなく無限に体積を大きくしようとし、体積も形も一定でない状態をこう呼んでいる[2]。 気体は、物質の三態のひとつである[3]

純粋な気体を構成する粒子は、原子の場合(ネオンなどの希ガス)、同一種類の原子から構成される元素分子の場合(酸素など)、複数種類の原子から成る化合物分子の場合(二酸化炭素など)がある[要出典]混合気体は複数の純粋な気体が混じりあったものである。空気もそれ(混合気体)にあたる。

液体や固体との大きな違いは、気体を構成する粒子間の距離が大きい点である。気体粒子の相互作用は電場重力場のある状態では無視できる程度であり、右図のようにそれぞれの粒子が一定の速度ベクトルを持つ。

気相液相とプラズマ相の中間にあり[4]、プラズマへと転移する温度が気体の存在する上限温度となる。極低温で存在する量子縮退気体[5]が近年注目を集めている[6]。高密度の原子気体を極低温に冷却したものは、ボース気体またはフェルミ気体と呼ばれる統計的振る舞いを示す。詳しくはボース=アインシュタイン凝縮を参照。

気相の粒子(原子分子イオン)は、電場などがない限り自由に運動する。

気体は液体とともに流体であるが、分子の熱運動が分子間力を上回っており、液体の状態と比べ、原子または分子がより自由に動ける。通常では固体や液体より粒子間の距離がはるかに大きく、そのため密度は最も小さくなる。また、圧力や温度による体積の変化が激しい。構成粒子間でのやりとりが少ないので、熱の伝導は低い。

気体状態では、粒子は自由かつランダムに動く熱運動をしている。また、それを構成する粒子間の引力(分子間力)は働かない。さらにその粒子の大きさ、質量共に気体の体積に比べてはるかに小さい。このために気体の状態では物質の種類を問わずに共通の性質が表れやすい。たとえば同一温度、同一気圧の下では、気体の種類を問わず同一体積中に含まれる分子数は一定である。これをアボガドロの法則という。気体分子の大きさと質量を存在しないものとした仮想の気体のモデル理想気体といい、気体の基本的性質を示すために扱われる。

臨界温度以下の気相のことを蒸気と呼ぶ。臨界温度以下で気体を圧縮していくと液体へ相転移(一次転移)する。また、ある臨界圧力以下の圧力が物質の飽和蒸気圧と等しくなる点が沸点である。

気体の単離

我々は空気中で生活しているため、化学の分野など、気体を成分に分けて扱おうとすると、周囲の空気と混じってしまいやすいため、特別な工夫を必要とする。

利用

流体なので形を定めることが出来ない。しかし、固体の容器に監禁することで利用する例もある。柔らかな素材に閉じこめれば、体積が弾性的に変形するので、衝撃吸収の可能な素材となる。また熱伝導度が低いため、断熱の効果もある。発泡スチロールでは多数の細かい泡のような形で気体を含んでおり、これらの性質を強く示す。

物理的性質

が漂う様子から、周囲の気体の動きがある程度わかる。

ほとんどの気体は人間の知覚では観察が難しいため、圧力・体積・温度といった物理的性質と粒子数(物質量)といった性質で表す。これら4つの特性を様々な気体の様々な条件下で計測したのが、ロバート・ボイルジャック・シャルルジョン・ドルトンジョセフ・ルイ・ゲイ=リュサックアメデオ・アヴォガドロといった人々である。彼らの研究によって最終的にそれらの特性間の数学的関係が明らかとなり、理想気体の状態方程式となって結実した。

気体粒子は互いに十分離れているため、液体や固体ほど隣接する粒子に影響を及ぼしあうことはない。そのような相互作用(分子間力)は気体粒子の持つ電荷に由来する。同じ電荷は反発しあい、逆の電荷は引き付け合う。イオンでできた気体には恒久的な電荷があり、化合物の気体には極性共有結合がある。極性共有結合の場合、化合物全体としては中性であっても、分子内に電荷の集中する部分が生じる。分子間の共有結合には一時的な電荷もあり、それをファンデルワールス力と呼ぶ。このような分子間力の相互作用はそれぞれの気体を構成する物質の物理特性によって異なる[注釈 1][7]。例えば、イオン結合の化合物と共有結合の化合物の「沸点」を比べるとその違いが明らかとなる[8]。右の写真のようにただよう煙は、低圧の気体がどのように振る舞っているかという洞察を与えてくれる。

気体は他の状態の物質と比較すると、密度粘度が極めて低い。気体の粒子の運動は圧力温度に影響される。粒子間の距離と速度の変化は圧縮率で表される。その粒子の距離と速度は屈折率で表される気体の光学特性にも影響する。気体は容器全体に一様に分布するように拡散する。


注釈

  1. ^ このような物理特性の例外として、マイケル・ファラデーは1833年、氷に電気伝導性がないことを発見した。詳しくは、John Tyndall's Faraday as a Discoverer (1868), p.45
  2. ^ このときの温度の上限は 1500 K とされている。詳しくは(John 1984, p. 256)

出典

  1. ^ a b c 岩波書店『広辞苑』 第6版 「気体」
  2. ^ a b ブリタニカ百科事典 【気体】
  3. ^ McPherson & Henderson 1917, pp. 104–10
  4. ^ American Chemical Society, Faraday Society, Chemical Society (Great Britain)'s The Journal of physical chemistry, Volume 11 (Cornell – 1907), page 137.
  5. ^ Tanya Zelevinsky (2009). “84Sr—just right for forming a Bose-Einstein condensate”. Physics 2: 94. http://physics.aps.org/articles/v2/94. 
  6. ^ Quantum Gas Microscope Offers Glimpse Of Quirky Ultracold Atoms ScienceDaily 4 November 2009 - ボース=アインシュタイン凝縮についてのリンクを提供
  7. ^ The Journal of physical chemistry, Volume 11 (Cornell – 1907) pp. 164–5.
  8. ^ John S. Hutchinson (2008). Concept Development Studies in Chemistry. p. 67. http://cnx.org/content/col10264/latest/ 
  9. ^ Anderson 1984, p. 501
  10. ^ J. Clerk Maxwell (1904). Theory of Heat. Mineola: Dover Publications. pp. 319–20. ISBN 0486417352 
  11. ^ See pages 137–8 of Society (Cornell – 1907).
  12. ^ Kenneth Wark (1977). Thermodynamics (3 ed.). McGraw-Hill. p. 12. ISBN 0-07-068280-1 
  13. ^ (McPherson & Henderson 1917, pp. 60–61)
  14. ^ Anderson 1984, pp. 289–291
  15. ^ Anderson 1984, p. 291
  16. ^ John 1984, p. 205
  17. ^ John 1984, pp. 247–56
  18. ^ McPherson & Henderson 1917, pp. 52–55
  19. ^ McPherson & Henderson 1917, pp. 55–60
  20. ^ John P. Millington (1906). John Dalton. pp. 72, 77–78 
  21. ^ Online Etymology Dictionary
  22. ^   (英語) The Chemical History of a Candle/Lecture II, ウィキソースより閲覧。 






気体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「気体」の関連用語

気体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



気体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの気体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS