タンパク質 タンパク質の概要

タンパク質

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/04/19 02:12 UTC 版)

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。

構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多くの種類が存在する[1]。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる[2]ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。

タンパク質は、炭水化物脂質とともに三大栄養素と呼ばれ[3]、各々の英単語の頭文字を取って「PFC」とも呼ばれる。タンパク質は筋肉や骨、皮膚などをつくる役割も果たしている[3]

名称

ドイツ語: Protein英語: proteinフランス語: protéine [prɔtein]スペイン語: proteínaギリシア語で「第一の」を意味する prōteîos から採られた。1838年にオランダの化学者ヨハンネス・ムルデルが、スウェーデンの化学者イェンス・ベルセリウスから助言を受け、窒素を非常に多く含む生物の基本要素と考えてこの名称をつけた[4]

「蛋白質」の「蛋」とはのことを指し、卵白(蛋白)がタンパク質を主成分とすることによる。これは Protein がドイツ語でまた Eiweiß(卵白)とも訳され、これが日本語に直訳されたと考えられる[4]

「蛋」という漢字は、例えば皮蛋のように中国ではよく使われる字であるが、日本ではあまり普及していない。そのため栄養学者川島四郎が「蛋白質」では分かりにくいとして「卵白質」という語を使用したが、一般的に利用されるにはいたらなかった。 現在では、栄養学分野では平仮名の「たんぱく質」、生物学では片仮名の「タンパク質」が使われる傾向にある[5]

構造

タンパク質は以下のような階層構造をもつ。

また、アミノ酸のみで構成された種類は単純タンパク質と言い、構成成分にアミノ酸以外のものが含まれる場合は複合タンパク質と呼ばれる[1]

アミノ酸

食物として摂取したタンパク質は消化の過程でアミノ酸にまで分解され吸収され、体内で再びタンパク質へ構成される。このタンパク質を作る基本物質であるアミノ酸は、炭素元素を中心に水溶液中でプラスに荷電するアミノ基とマイナスに荷電するカルボキシ基を持ち、残り2箇所に水素と側鎖と呼ばれる分子構造を持つ[2]。タンパク質をつくるアミノ酸は20種類あるが、これらの差は側鎖の形状の違いで分けられる[2]

一次構造

タンパク質はアミノ酸のポリマーである。その基本的な構造は2つのアミノ酸の一方のカルボキシ基 (−COOH) と他方のアミノ基 (−NH2) が水分子を1つ放出する脱水縮合ペプチド結合)を起こして酸アミド結合 (−CO−NH−) を形成することでできる鎖状である[2]。また、システイン残基がしばしばジスルフィド結合 (S−S) の架橋構造をつくることもある。このポリマーの末端の結合していない部分は、アミノ基側をN末端、カルボキシ基側をC末端とよぶ[6]。この時、一列のアミノ酸の脇には側鎖が並ぶ事になり、この配列の数や順序を指してタンパク質の一次構造とよぶ[2]

アミノ酸の配列は、遺伝子の本体である物質・DNA塩基配列により決定される[6](3個のヌクレオチドにより、1つのアミノ酸が指定される)。ペプチド結合してタンパク質の構成成分となった単位アミノ酸部分 (−NH−CH(−R)−CO−) をアミノ酸残基と呼ぶ。それぞれの残基は、側鎖置換基 R の違いによって異なる性質をもつ。

二次構造

鎖状のポリペプチドは、それだけではタンパク質の機能を持たない。一次構造で並んだ側鎖が相互作用で結びつき、ポリペプチドには決まった2種類の方法で結びついた箇所が生じる。1つはαヘリックス(螺旋構造)と呼ばれ、あるアミノ酸残基の酸素と、4つ離れた残基の水素の結びつきを基礎に、同じ事が順次起こってポリペプチドにらせん構造をつくる[7]。もう1つのβシートとは、ポリペプチドの一部が折り畳まれ、それぞれの水素と酸素残基が結合してつくるシート状の構造である[7]。これらは二次構造と呼ばれる[8]水素結合ファンデルワールス力などによるこの畳み込みはフォールディング (folding) とも呼ばれる[9]。結合エネルギーが比較的低いため、簡単な処理によって構造を変性させやすい[8]

三次構造

リゾチームのリボンモデル。αヘリックスが赤、βシートは黄色で表される。

タンパク質はαヘリックスやβシートといった二次構造の特定の組み合わせが局部的に集合し形成されたαヘアピンやβヘアピンなどの超二次構造と呼ばれる単位ができて核に纏まったドメインをとり、タンパク質全体としての三次構造をとる[10]。これは立体的に見てまとまった領域である。三次構造は側鎖間の相互作用によって安定する。特殊な塩基間の水素結合やシステイン残基間のジスルフィド結合静電引力などが安定化に寄与するが、特に疎水結合が大きく影響する。そのため有機溶媒界面活性剤などで疎水結合を切ると三次構造が壊れ、タンパク質の変性が起こりやすい[10]。三次構造の立体を図案化し描かれたものは「リボンモデル」と言う[7]

四次構造

ヘモグロビンのリボンモデル。2種2個ずつのグロビンサブユニットが計4つ集まり、四次構造を作っている。

タンパク質の中には複数(場合によっては複数種)のポリペプチド鎖が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を四次構造と呼ぶ[11]。各ポリペプチド鎖はモノマーまたはサブユニットと呼ばれ、複合体はオリゴマーと言う[11]。各サブユニットには疎水結合や水素結合またはイオン結合が広い領域に多数存在し相補的に働くために方向性があるため、サブユニットは全体で特定の空間配置(コンホメーション)を取る[11]。例えば、ヒトの赤血球に含まれ酸素を運ぶヘモグロビンは、α・β2種類のグロビンというサブユニットがそれぞれ2つずつ結びつく四次構造を持ったタンパク質の一種である[7]

一次構造と高次構造の関係

タンパク質の立体構造は、そのアミノ酸配列(一次構造)により決定されていると考えられている(Anfinsenのドグマ)。また、二次以上の高次構造は、いずれも一次構造で決定されるアミノ酸配列を反映している。例えば GluAlaLeu が連続するとαヘリックス構造をとりやすい。IleValMetはβシート構造をとりやすい。また各構造の継ぎ目の鋭角なターンの部分には GlyProAsn が置かれる、などの例がある。さらに、疎水性アミノ酸残基同士は引き合い(疎水結合)、Cys 同士はジスルフィド結合を形成して高次構造を安定化させる。

プロテオーム

生体のタンパク質を構成するアミノ酸は20種類あるが[1]、それが3つ連結したペプチドだけでも約203=8000通りの組み合わせがあり得る。タンパク質については、その種類は数千万種と言われる。生物の遺伝子(ゲノム)から作られるタンパク質ひとそろいのセットは、プロテオームと呼ばれるが、ヒトゲノムの塩基配列解読が終わった今、プロテオームの解析(プロテオミクス)が盛んに進められている。

タンパク質の構造と機能

タンパク質の機能は上記の三次構造・四次構造(立体構造)によって決定される。これは、同じアミノ酸の配列からなるタンパク質でも、立体構造(畳まれ方)によって機能が変わるということである。たとえばBSEの原因となるプリオンは、正常なプリオンとは立体構造が違うだけである。なお、多くのタンパク質では、圧力を加えたり、溶液の pH 値を変える、変性剤を加えるなどの操作により二次以上の高次構造が変化し、その機能(活性)を失う。これをタンパク質の変性という。変性したタンパク質においては、疎水結合水素結合イオン結合の多くが破壊され、全体にランダムな構造が増加したペプチド鎖の緩んだ状態になることが知られている。タンパク質の変性は、かつて不可逆な過程であると考えられてきたが、現在では多くのタンパク質において、変性は可逆的な過程である事が確認されている。なお、変性したタンパク質を元の高次構造に戻す操作をタンパク質の再生という。タンパク質の再生は、原理としては、畳み込まれたペプチド鎖を一旦完全にほどき、数時間かけてゆっくりと畳み込むよう条件を細かく調整・変化させることで行われている。

タンパク質の折り畳み

特定のアミノ酸配列に対して、存在しうる安定な高次構造が複数存在するにもかかわらず、生体内では特定の遺伝子から特定の機能を持つ高次構造をとったタンパク質が合成できるかは、必ずしも明らかではない。クリスチャン・アンフィンセンの実験などで判明した多くのタンパク質が変性した後にもその高次構造の再生が可能なことから、一次構造それ自体が、高次構造のかなりの部分を決めていることは疑いがなく、これは「アンフィンセンのドグマ」と呼ばれる[9]。しかし、先のタンパク質の再生は数時間かかる操作(実際には、二次構造の畳み込みはかなり迅速に起こっていて、三次構造の確定に時間がかかるらしい)であるのに対し、生体内でのタンパク質の合成は数十秒から一分で完了する。さらに、発見された「アンフィンセンのドグマ」に反する事例からも、タンパク質分子を高速に畳み込み、正しい高次構造へと導く因子の存在が考えられている[9](例:タンパク質ジスルフィドイソメラーゼ、プロリンシストランスイソメラーゼ、分子シャペロン)。また、生体内では間違った立体構造をしているタンパク質はそのタンパク質のLysのアミノ基にポリユビキチン共有結合で結合した後に、プロテアソームによって分解される。

タンパク質は周囲の環境の変化によりその高次構造を変化させ、その機能を変えることができる。タンパク質である酵素は、その触媒する反応の速度を条件に応じて変化させることができる。

立体構造の決定

上記のようなタンパク質の高次構造は、X線結晶構造解析NMR(核磁気共鳴)、電子顕微鏡などによって測定されている。また、タンパク質構造予測による理論的推定なども行われている。タンパク質の立体構造と機能は密接な関係を持つことから、それぞれのタンパク質の立体構造の解明は、その機能を解明するために重要である。いずれ、ほしい機能にあわせてタンパク質の立体構造を設計し、合成できるようになるだろうと考えられている。

これまでの研究により構造が解明されたタンパク質については、蛋白質構造データバンク[12]によりデータの管理が行われており、研究者のみならず一般の人でもそのデータを自由に利用、閲覧できる。

物性

熱力学的安定性

タンパク質は、それぞれのアミノ酸配列に固有の立体構造を自発的に形成する。このことから、タンパク質の天然状態は熱力学的な最安定状態(最も自由エネルギーが低い状態)であると考えられている(アンフィンセンのドグマ)。

タンパク質の立体構造安定性は天然状態と変性状態の自由エネルギーの差 (変性自由エネルギー)で決まる。なお、温度依存性を議論する場合には、安定性の指標として が用いられることもある。通常、タンパク質の安定性は、温度、圧力、溶媒条件等に依存する。従って、それらの条件をある程度変化させると、タンパク質は変性する。

タンパク質の安定性を決める要因として、ファン・デル・ワールス相互作用疎水性相互作用水素結合イオン結合、鎖エントロピー、ジスルフィド結合などがある。これらの寄与の大きさは、温度等により変わる。

多くのタンパク質は、室温近傍で数十 kJ/mol 程度のをとる。この非常に小さなは変性状態に対して天然状態が絶妙なバランスで安定であることを示しており、この性質は限界安定性 (marginal stability) と呼ばれている。

温度が変化すると、変性エンタルピーや変性エントロピーは急激に変化するが、それらの変化の大部分は相殺して に寄与しない(エンタルピーエントロピー相殺)。変性熱容量変化は正の値を持ち、タンパク質内部のアミノ酸残基(疎水性アミノ酸が多い)の水和に伴う水和水の熱容量変化によるものであると考えられている。

モルテン・グロビュール状態

タンパク質はその変性の途中で、二次構造はあまり変化しないのに三次構造が壊れた状態を取ることがある。これをモルテン・グロビュール状態 (molten globule state) とよぶ[注釈 1]。この状態は高塩濃度下かつ低pHの条件で安定に存在することがあり、タンパク質の折り畳みの初期過程を反映したものであると考えられている。

熱変性・低温変性

タンパク質は高温になると変性する。これは熱変性と呼ばれる。加熱するとタンパク質の一次構造が変化することはほとんど無いが、二次以上の高次構造は崩れやすい。約60℃以上になると、周囲に軽く結びつき水和状態をつくる水分子が振動し高次結合部分が解け、細長い状態になる。さらに内部に封じられた疎水部分が露出し、他のポリペプチドの露出部分と引き合い、全体に詰まった状態になる。通常は透明で液状の卵白が、加熱されると白い固形に変化するのはこの原理からである[7]

また、低温でも変性を起こすが、通常のタンパク質が低温変性を起こす温度は0 ℃以下である。タンパク質の安定性は変性自由エネルギーで決まる。変性熱容量は室温付近でほぼ一定値であるため、の温度依存性は上に凸の曲線になる。この曲線との交点が低温変性と熱変性の温度である。

酸変性・アルカリ変性

タンパク質はpHの変化によっても変性する。pHが極端に変化すると、タンパク質の表面や内部の荷電性極性基(GluAspLysArgHis)の荷電状態が変化する。これによってクーロン相互作用によるストレスがかかり、タンパク質が変性する。

圧力変性

タンパク質は圧力変化によって変性することが知られている。通常のタンパク質は常圧 (0.1 MPa) 近傍でもっとも安定であり、数100 MPa程度で変性する。キモトリプシンは例外的であり、100 MPa程度でもっとも安定である。そのため、温度によっては変性状態にあるものが加圧によって巻き戻ることがある。圧力変性は天然状態よりも変性状態の体積が小さいために起こるものであり、ルシャトリエの原理で説明できる。

変性剤による変性

尿素グアニジン塩酸は水素結合によるタンパク質の構造安定性を、結合間に割り込むことで低下させる作用を持つため、その溶液中でタンパク質は変性する。このようにタンパク質を変性させる作用をもつ物質は変性剤と呼ばれる。また通常は変性剤とは呼ばれないが、界面活性剤もタンパク質を変性させる作用がある。


注釈

  1. ^ 東京大学の和田昭允教授の命名による。

出典

  1. ^ a b c d 生化学辞典第2版、p.810 【タンパク質】
  2. ^ a b c d e 武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味
  3. ^ a b 三大栄養素の基礎知識”. 2020年10月31日閲覧。
  4. ^ a b 武村(2011)、p.16-23、第一章 たんぱく質の性質、第一節 栄養素としてのたんぱく質
  5. ^ 武村(2011)、p.3-6、はじめに
  6. ^ a b 生化学辞典第2版、p.812 【タンパク質の一次構造】
  7. ^ a b c d e 武村(2011)、p.34-48、第一章 たんぱく質の性質、第三節 「焼く」とどうなる?たんぱく質
  8. ^ a b 生化学辞典第2版、p.816 【タンパク質の二次構造】
  9. ^ a b c d 武村(2011)、p.85-96、第二章 たんぱく質の作られ方、第四節 ポリペプチドはいかにして「たんぱく質」となるか
  10. ^ a b 生化学辞典第2版、p.812 【タンパク質の三次構造】
  11. ^ a b c 生化学辞典第2版、p.816 【タンパク質の四次構造】
  12. ^ (PDB) [1]
  13. ^ a b 武村(2011)、p.54-60、第二章 たんぱく質の作られ方、第一節 体をつくるあげるたんぱく質
  14. ^ 武村(2011)、p.98-113、第三章 たんぱく質のはたらき、第一節 たんぱく質はたんぱく質を分解する
  15. ^ a b c d e 武村(2011)、p.113-123、第三章 たんぱく質のはたらき、第二節 体のはたらきを維持するたんぱく質を
  16. ^ 第2章 日本食品標準成分表 PDF(日本語版)”. 文部科学省. 2021年6月3日閲覧。
  17. ^ 栄養価やアレルギー、安全性など昆虫食の疑問にお答えします”. TAKEO. 2021年6月3日閲覧。
  18. ^ ヒトはなぜタンパク質を食べるの?”. 公益財団法人 日本食肉消費総合センター. 2021年6月3日閲覧。
  19. ^ a b たんぱく質 (PDF) 」『日本人の食事摂取基準」(2010年版)
  20. ^ a b Report of a Joint WHO/FAO Expert Consultation Diet, Nutrition and the Prevention of Chronic Diseases, 2003
  21. ^ a b Godman, Heidi (2022年6月1日). “Protein intake associated with less cognitive decline” (英語). Harvard Health. 2022年5月19日閲覧。
  22. ^ a b [2019年文献 植物性蛋白質を多くとる人は,全死亡ならびに心血管疾患死亡リスクが低い]”. Life Science. 2022年1月22日閲覧。
  23. ^ a b Sanjeev Budhathoki、Norie Sawada、Motoki Iwasaki、Taiki Yamaji、Atsushi Goto、Ayaka Kotemori、Junko Ishihara、Ribeka Takachi ほか「Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality in a Japanese Cohort」『JAMA Intern Med』第179巻第11号、American Medical Association、2019年、1509-1518頁、doi:10.1001/jamainternmed.2019.2806 
  24. ^ Publishing, Harvard Health. “Eat more plant-based proteins to boost longevity”. Harvard Health. 2020年11月3日閲覧。
  25. ^ Publishing, Harvard Health. “Plant protein may help you live longer”. Harvard Health. 2020年11月13日閲覧。
  26. ^ 肉類摂取と死亡リスクとの関連”. 国立がん研究センター. 2022年1月22日閲覧。
  27. ^ Eiko Saito、Xiaohe Tang、Sarah Krull Abe、Norie Sawada、Junko Ishihara、Ribeka Takachi、Hiroyasu Iso、Taichi Shimazu ほか「Association between meat intake and mortality due to all-cause and major causes of death in a Japanese population」『PLoS One』第15巻第12号、Public Library of Science (PLOS)、2020年、doi:10.1371/journal.pone.0244007 
  28. ^ The sweet danger of sugar” (英語). Harvard Health (2017年5月1日). 2022年6月1日閲覧。
  29. ^ Solan, Matthew (2022年2月1日). “Building better muscle” (英語). Harvard Health. 2022年6月1日閲覧。
  30. ^ Eating enough daily protein may delay disability” (英語). Harvard Health (2019年2月1日). 2022年6月1日閲覧。
  31. ^ 「野菜350g」は本当にカラダにいいの…?食生活のウソホント”. FRIDAYデジタル (2020年7月16日). 2020年11月27日閲覧。
  32. ^ 『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』日本アミノ酸学会監訳、医歯薬出版、2009年05月。ISBN 978-4263705681 邦訳元 Protein and amino acid requirements in human nutrition, Report of a Joint WHO/FAO/UNU Expert Consultation, 2007
  33. ^ Low-carb and high-fat diet helps obese older adults” (英語). Harvard Health (2020年12月1日). 2022年6月1日閲覧。
  34. ^ 低炭水化物ダイエットご用心…発症リスク高まる2012.07.08読売新聞。スウェーデンの30〜49歳の女性43396人[信頼性要検証]
  35. ^ joint FAO/WHO expert consultation. "Chapter 11 Calcium", Human Vitamin and Mineral Requirements, 2002.
  36. ^ ウォルター C. ウィレット 『太らない、病気にならない、おいしいダイエット-ハーバード大学公式ダイエットガイド』 光文社、2003年5月。174〜175頁。ISBN 978-4334973964。(原著 Eat, Drink, and Be Healthy, 2001)
  37. ^ a b 武村(2011)、p.123-133、第三章 たんぱく質のはたらき、第三節 たんぱく質のお湯加減―いろいろな温度で働くたんぱく質たち―
  38. ^ a b c d 武村(2011)、p.134-145、第三章 たんぱく質のはたらき、第四節 たんぱく質の装飾品と、その利用
  39. ^ ガラクトースN-アセチルグルコサミンN-アセチルガラクトサミンマンノース、L- フコースグルコースキシロースグルクロン酸シアル酸(武村(2011)、p.139)
  40. ^ a b 武村(2011)、p.145-153、第三章 たんぱく質のはたらき、第五節 たんぱく質の「死」





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「タンパク質」の関連用語

タンパク質のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



タンパク質のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのタンパク質 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2023 GRAS Group, Inc.RSS