フォールディングとは? わかりやすく解説

Weblio 辞書 > 固有名詞の種類 > 自然 > 物質 > 化合物 > タンパク質 > フォールディングの意味・解説 

folding

別表記:フォールディング

「folding」の意味・「folding」とは

「folding」は英語の単語で、直訳すると「折り畳み」を意味する一般的には物体折りたたむことができる性質や、その行為自体を指す。例えば、折りたたみ可能な椅子テーブルは「folding chair」や「folding table」と表現されるまた、生物学分野では、タンパク質特定の形状折りたたまれるプロセスを指すこともある。

「folding」の発音・読み方

「folding」の発音は、IPA表記で /ˈfoʊldɪŋ/ となる。IPAカタカナ読みでは「フォールディング」となる。日本人発音するカタカナ英語では「フォールディング」と読む。

「folding」の定義を英語で解説

「Folding」 is a term that refers to the property of an object being able to be folded, or the act of folding itself. For example, a chair or table that can be folded is referred to as a "folding chair" or "folding table". In the field of biology, it can also refer to the process of a protein being folded into a specific shape.

「folding」の類語

「folding」の類語としては、「collapsing」や「bending」がある。「collapsing」は「崩壊」や「倒壊」を意味し物体自重などで形状を失う様子を表す。「bending」は「曲げる」を意味し物体が曲がる性質やその行為を指す。

「folding」に関連する用語・表現

「folding」に関連する用語としては、「foldable」や「foldability」がある。「foldable」は形容詞で、「折りたたむことが可能な」という意味を持つ。「foldability」は名詞で、「折りたたむことが可能な性質」を指す。

「folding」の例文

1. I bought a folding chair for the camping trip.(キャンプのために折りたたみ椅子買った。)
2. The folding process of proteins is essential for their function.(タンパク質折りたたみプロセスはその機能にとって不可欠である。)
3. This folding table is very convenient for outdoor activities.(この折りたたみテーブルアウトドア活動にとても便利だ。)
4. The folding bike can be easily carried on the train.(折りたたみ自転車電車簡単に持ち運べる。)
5. The folding mechanism of this device is quite complex.(このデバイス折りたたみ機構はかなり複雑だ。)
6. The folding screen can be used to divide the room.(折りたたみスクリーン部屋分けるのに使える。)
7. The folding umbrella fits easily into my bag.(折りたたみ傘は私のバッグ簡単に収まる。)
8. The folding technique used in this origami is unique.(この折り紙使われている折りたたみ技術ユニークだ。)
9. The folding of this map is a bit tricky.(この地図折りたたみ方は少し難しい。)
10. The folding structure of this protein is still unknown.(このタンパク質折りたたみ構造はまだ未知だ。)

フォールディング【folding】

読み方:ふぉーるでぃんぐ

折りたたみ折りたたむこと。

たんぱく質折りたたまれ特定の立体構造をとること。アミノ酸直鎖状つながってできたたんぱく質折りたたまれることにより、その構造に応じてさまざまな機能役割を担うことが知られている。

「フォールディング」に似た言葉

フォールディング

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 09:12 UTC 版)

タンパク質フォールディング (英語: Protein folding) とは、タンパク質鎖がその本来の三次元構造、通常は生物学的に機能するコンホメーション(立体構造)を、迅速かつ再現性のある方法で獲得する物理的なプロセスである。これは、ポリペプチドランダムコイルからその特徴的で機能的な三次元構造に折りたたまれる物理的な過程である[4]。それぞれのタンパク質は、mRNAの配列からアミノ酸の直鎖に翻訳されるとき、折りたたまれていないポリペプチドまたはランダムコイルとして存在する。そのポリペプチドは、安定した (長続きする) 立体構造を欠いている (第1図の左側)。そのポリペプチド鎖がリボソームで合成されていく過程で、直鎖が三次元構造に折りたたまれる。フォールディングは、ポリペプチド鎖の翻訳中でも始まる。アミノ酸は互いに相互作用して、明確に定義された三次元構造、つまり天然状態として知られている折りたたまれたタンパク質 (図の右側) を生成する。結果として生じる三次元構造は、アミノ酸配列または一次構造 (アンフィンセンのドグマ) によって決定される[5]


  1. ^ “So much more to know”. Science 309 (5731): 78–102. (July 2005). doi:10.1126/science.309.5731.78b. PMID 15994524. http://www.sciencemag.org/cgi/content/full/309/5731/78b. 
  2. ^ King (2007年). “MIT OpenCourseWare - 7.88J / 5.48J / 7.24J / 10.543J Protein Folding Problem, Fall 2007 Lecture Notes - 1”. MIT OpenCourseWare. 2013年9月28日時点のオリジナルよりアーカイブ。2013年6月22日閲覧。
  3. ^ Dill KA (June 2008). “The Protein Folding Problem”. Annu Rev Biophys 37: 289–316. doi:10.1146/annurev.biophys.37.092707.153558. PMC 2443096. PMID 18573083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443096/. 
  4. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walters, Peter (2002). “The Shape and Structure of Proteins”. Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 978-0-8153-3218-3. https://www.ncbi.nlm.nih.gov/books/NBK26830/ 
  5. ^ Anfinsen CB (July 1972). “The formation and stabilization of protein structure”. The Biochemical Journal 128 (4): 737–49. doi:10.1042/bj1280737. PMC 1173893. PMID 4565129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173893/. 
  6. ^ Berg, Jeremy M.; Tymoczko, John L.; Stryer, Lubert (2002). “3. Protein Structure and Function”. Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3. https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=stryer%5Bbook%5D+AND+215168%5Buid%5D&rid=stryer.chapter.280 
  7. ^ a b Selkoe DJ (December 2003). “Folding proteins in fatal ways”. Nature 426 (6968): 900–4. Bibcode2003Natur.426..900S. doi:10.1038/nature02264. PMID 14685251. 
  8. ^ Alberts, Bruce; Bray, Dennis; Hopkin, Karen; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2010). “Protein Structure and Function”. Essential cell biology (Third ed.). New York, NY: Garland Science. pp. 120–70. ISBN 978-0-8153-4454-4 
  9. ^ Kim PS, Baldwin RL (1990). “Intermediates in the folding reactions of small proteins”. Annual Review of Biochemistry 59: 631–60. doi:10.1146/annurev.bi.59.070190.003215. PMID 2197986. 
  10. ^ Jackson SE (1998). “How do small single-domain proteins fold?”. Folding & Design 3 (4): R81-91. doi:10.1016/S1359-0278(98)00033-9. PMID 9710577. 
  11. ^ Kubelka J, Hofrichter J, Eaton WA (February 2004). “The protein folding 'speed limit'”. Current Opinion in Structural Biology 14 (1): 76–88. doi:10.1016/j.sbi.2004.01.013. PMID 15102453. https://zenodo.org/record/1259347. 
  12. ^ Anfinsen CB (July 1973). “Principles that govern the folding of protein chains”. Science 181 (4096): 223–30. Bibcode1973Sci...181..223A. doi:10.1126/science.181.4096.223. PMID 4124164. 
  13. ^ a b c d e f g h Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2016). Principles of Biochemistry (Fifth ed.). Wiley. ISBN 978-1-118-91840-1 
  14. ^ Alexander PA, He Y, Chen Y, Orban J, Bryan PN (July 2007). “The design and characterization of two proteins with 88% sequence identity but different structure and function”. Proceedings of the National Academy of Sciences of the United States of America 104 (29): 11963–8. Bibcode2007PNAS..10411963A. doi:10.1073/pnas.0700922104. PMC 1906725. PMID 17609385. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906725/. 
  15. ^ Rose GD, Fleming PJ, Banavar JR, Maritan A (November 2006). “A backbone-based theory of protein folding”. Proceedings of the National Academy of Sciences of the United States of America 103 (45): 16623–33. Bibcode2006PNAS..10316623R. doi:10.1073/pnas.0606843103. PMC 1636505. PMID 17075053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636505/. 
  16. ^ a b c Fersht, Alan (1999). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. Macmillan. ISBN 978-0-7167-3268-6. https://books.google.com/books?id=QdpZz_ahA5UC&pg=PR20 
  17. ^ Protein Structure”. Scitable. Nature Education. 2016年11月26日閲覧。
  18. ^ Pratt, Charlotte; Cornely, Kathleen (2004). “Thermodynamics”. Essential Biochemistry. Wiley. ISBN 978-0-471-39387-0. http://www.wiley.com/college/pratt/0471393878/instructor/review/thermodynamics/7_relationship.html 2016年11月26日閲覧。 
  19. ^ Fedorov AN (1997). “Cotranslational Protein Folding”. J. Biol. Chem. 272 (52): 32715-32718. doi:10.1074/jbc.272.52.32715. 
  20. ^ Zhang, Gong; Ignatova, Zoya (2011-02-01). “Folding at the birth of the nascent chain: coordinating translation with co-translational folding”. Current Opinion in Structural Biology 21 (1): 25–31. doi:10.1016/j.sbi.2010.10.008. ISSN 0959-440X. PMID 21111607. 
  21. ^ van den Berg B, Wain R, Dobson CM, Ellis RJ (August 2000). “Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell”. The EMBO Journal 19 (15): 3870–5. doi:10.1093/emboj/19.15.3870. PMC 306593. PMID 10921869. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC306593/. 
  22. ^ Al-Karadaghi, Salam. “Torsion Angles and the Ramachnadran Plot in Protein Structures”. www.proteinstructures.com. 2016年11月26日閲覧。
  23. ^ Pace CN, Shirley BA, McNutt M, Gajiwala K (January 1996). “Forces contributing to the conformational stability of proteins”. FASEB Journal 10 (1): 75–83. doi:10.1096/fasebj.10.1.8566551. PMID 8566551. 
  24. ^ Cui D, Ou S, Patel S (December 2014). “Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects”. Proteins 82 (12): 3312–26. doi:10.1002/prot.24683. PMID 25204743. 
  25. ^ Tanford C (June 1978). “The hydrophobic effect and the organization of living matter”. Science 200 (4345): 1012–8. Bibcode1978Sci...200.1012T. doi:10.1126/science.653353. PMID 653353. 
  26. ^ Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW (July 2004). “Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics”. Nature 430 (6995): 101–5. Bibcode2004Natur.430..101D. doi:10.1038/nature02611. PMID 15229605. 
  27. ^ Irbäck, Anders; Sandelin, Erik (November 2000). “On Hydrophobicity Correlations in Protein Chains”. Biophysical Journal 79 (5): 2252–2258. arXiv:cond-mat/0010390. Bibcode2000BpJ....79.2252I. doi:10.1016/S0006-3495(00)76472-1. PMC 1301114. PMID 11053106. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301114/. 
  28. ^ Irbäck, A.; Peterson, C.; Potthast, F. (3 September 1996). “Evidence for nonrandom hydrophobicity structures in protein chains.”. Proceedings of the National Academy of Sciences 93 (18): 9533–9538. arXiv:chem-ph/9512004. Bibcode1996PNAS...93.9533I. doi:10.1073/pnas.93.18.9533. PMC 38463. PMID 8790365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC38463/. 
  29. ^ Wilson, Benjamin A.; Foy, Scott G.; Neme, Rafik; Masel, Joanna (24 April 2017). “Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth”. Nature Ecology & Evolution 1 (6): 0146–146. doi:10.1038/s41559-017-0146. PMC 5476217. PMID 28642936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476217/. 
  30. ^ Willis, Sara; Masel, Joanna (September 2018). “Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes”. Genetics 210 (1): 303–313. doi:10.1534/genetics.118.301249. PMC 6116962. PMID 30026186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116962/. 
  31. ^ Foy, Scott G.; Wilson, Benjamin A.; Bertram, Jason; Cordes, Matthew H. J.; Masel, Joanna (April 2019). “A Shift in Aggregation Avoidance Strategy Marks a Long-Term Direction to Protein Evolution”. Genetics 211 (4): 1345–1355. doi:10.1534/genetics.118.301719. PMC 6456324. PMID 30692195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456324/. 
  32. ^ a b c d e f Dobson CM (December 2003). “Protein folding and misfolding”. Nature 426 (6968): 884–90. Bibcode2003Natur.426..884D. doi:10.1038/nature02261. PMID 14685248. 
  33. ^ a b c Hartl FU (June 1996). “Molecular chaperones in cellular protein folding”. Nature 381 (6583): 571–9. Bibcode1996Natur.381..571H. doi:10.1038/381571a0. PMID 8637592. 
  34. ^ a b Hartl FU, Bracher A, Hayer-Hartl M (July 2011). “Molecular chaperones in protein folding and proteostasis”. Nature 475 (7356): 324–32. doi:10.1038/nature10317. PMID 21776078. 
  35. ^ Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013). “Molecular chaperone functions in protein folding and proteostasis”. Annual Review of Biochemistry 82: 323–55. doi:10.1146/annurev-biochem-060208-092442. PMID 23746257. 
  36. ^ Shortle D (January 1996). “The denatured state (the other half of the folding equation) and its role in protein stability”. FASEB Journal 10 (1): 27–34. doi:10.1096/fasebj.10.1.8566543. PMID 8566543. 
  37. ^ Lee S, Tsai FT (2005). “Molecular chaperones in protein quality control”. Journal of Biochemistry and Molecular Biology 38 (3): 259–65. doi:10.5483/BMBRep.2005.38.3.259. PMID 15943899. 
  38. ^ Ojeda-May P, Garcia ME (July 2010). “Electric field-driven disruption of a native beta-sheet protein conformation and generation of a helix-structure”. Biophysical Journal 99 (2): 595–9. Bibcode2010BpJ....99..595O. doi:10.1016/j.bpj.2010.04.040. PMC 2905109. PMID 20643079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905109/. 
  39. ^ van den Berg B, Ellis RJ, Dobson CM (December 1999). “Effects of macromolecular crowding on protein folding and aggregation”. The EMBO Journal 18 (24): 6927–33. doi:10.1093/emboj/18.24.6927. PMC 1171756. PMID 10601015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171756/. 
  40. ^ Ellis RJ (July 2006). “Molecular chaperones: assisting assembly in addition to folding”. Trends in Biochemical Sciences 31 (7): 395–401. doi:10.1016/j.tibs.2006.05.001. PMID 16716593. 
  41. ^ Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (August 2008). “Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 10949–54. Bibcode2008PNAS..10510949T. doi:10.1073/pnas.0712334105. PMC 2490668. PMID 18664583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490668/. 
  42. ^ a b Marusich EI, Kurochkina LP, Mesyanzhinov VV. Chaperones in bacteriophage T4 assembly. Biochemistry (Mosc). 1998;63(4):399-406
  43. ^ a b c d Chaudhuri TK, Paul S (April 2006). “Protein-misfolding diseases and chaperone-based therapeutic approaches”. The FEBS Journal 273 (7): 1331–49. doi:10.1111/j.1742-4658.2006.05181.x. PMID 16689923. 
  44. ^ a b Soto C, Estrada L, Castilla J (March 2006). “Amyloids, prions and the inherent infectious nature of misfolded protein aggregates”. Trends in Biochemical Sciences 31 (3): 150–5. doi:10.1016/j.tibs.2006.01.002. PMID 16473510. 
  45. ^ Hammarström P, Wiseman RL, Powers ET, Kelly JW (January 2003). “Prevention of transthyretin amyloid disease by changing protein misfolding energetics”. Science 299 (5607): 713–6. Bibcode2003Sci...299..713H. doi:10.1126/science.1079589. PMID 12560553. 
  46. ^ Chiti F, Dobson CM (2006). “Protein misfolding, functional amyloid, and human disease”. Annual Review of Biochemistry 75: 333–66. doi:10.1146/annurev.biochem.75.101304.123901. PMID 16756495. 
  47. ^ Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (December 2005). “Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses”. Accounts of Chemical Research 38 (12): 911–21. doi:10.1021/ar020073i. PMID 16359163. 
  48. ^ a b Cowtan K (2001). "Phase Problem in X-ray Crystallography, and Its Solution" (PDF). Encyclopedia of Life Sciences. Macmillan Publishers Ltd, Nature Publishing Group. 2016年11月3日閲覧
  49. ^ Drenth, Jan (2007-04-05). Principles of Protein X-Ray Crystallography. Springer Science & Business Media. ISBN 978-0-387-33746-3. https://books.google.com/books?id=Jobr7svN0IIC&pg=PR5 
  50. ^ Taylor, Garry (2003). “The phase problem”. Acta Crystallographica Section D 59 (11): 1881–90. doi:10.1107/S0907444903017815. PMID 14573942. 
  51. ^ a b c Bedouelle H (February 2016). “Principles and equations for measuring and interpreting protein stability: From monomer to tetramer”. Biochimie 121: 29–37. doi:10.1016/j.biochi.2015.11.013. PMID 26607240. 
  52. ^ Monsellier E, Bedouelle H (September 2005). “Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength”. Protein Engineering, Design & Selection 18 (9): 445–56. doi:10.1093/protein/gzi046. PMID 16087653. 
  53. ^ Park YC, Bedouelle H (July 1998). “Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate. A quantitative analysis under equilibrium conditions”. The Journal of Biological Chemistry 273 (29): 18052–9. doi:10.1074/jbc.273.29.18052. PMID 9660761. 
  54. ^ Ould-Abeih MB, Petit-Topin I, Zidane N, Baron B, Bedouelle H (June 2012). “Multiple folding states and disorder of ribosomal protein SA, a membrane receptor for laminin, anticarcinogens, and pathogens”. Biochemistry 51 (24): 4807–21. doi:10.1021/bi300335r. PMID 22640394. 
  55. ^ Royer CA (May 2006). “Probing protein folding and conformational transitions with fluorescence”. Chemical Reviews 106 (5): 1769–84. doi:10.1021/cr0404390. PMID 16683754. 
  56. ^ Beatrice M.P. Huyghues-Despointes, C. Nick Pace, S. Walter Englander, and J. Martin Scholtz. "Measuring the Conformational Stability of a Protein by Hydrogen Exchange." Methods in Molecular Biology. Kenneth P. Murphy Ed. Humana Press, Totowa, New Jersey, 2001. pp. 69–92
  57. ^ Cross, Graham H.; Freeman, Neville J.; Swann, Marcus J. (2008). “Dual Polarization Interferometry: A Real-Time Optical Technique for Measuring (Bio)molecular Orientation, Structure and Function at the Solid/Liquid Interface”. Handbook of Biosensors and Biochips. doi:10.1002/9780470061565.hbb055. ISBN 978-0-470-01905-4 
  58. ^ Bu Z, Cook J, Callaway DJ (September 2001). “Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin”. Journal of Molecular Biology 312 (4): 865–73. doi:10.1006/jmbi.2001.5006. PMID 11575938. 
  59. ^ Minde DP, Maurice MM, Rüdiger SG (2012). “Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp”. PLOS ONE 7 (10): e46147. Bibcode2012PLoSO...746147M. doi:10.1371/journal.pone.0046147. PMC 3463568. PMID 23056252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463568/. 
  60. ^ Park C, Marqusee S (March 2005). “Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding”. Nature Methods 2 (3): 207–12. doi:10.1038/nmeth740. PMID 15782190. 
  61. ^ Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ (January 2014). “Chaperone action at the single-molecule level”. Chemical Reviews 114 (1): 660–76. doi:10.1021/cr400326k. PMID 24001118. 
  62. ^ Jagannathan B, Marqusee S (November 2013). “Protein folding and unfolding under force”. Biopolymers 99 (11): 860–9. doi:10.1002/bip.22321. PMC 4065244. PMID 23784721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065244/. 
  63. ^ Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG (July 2011). “Calcium modulates force sensing by the von Willebrand factor A2 domain”. Nature Communications 2: 385. Bibcode2011NatCo...2..385J. doi:10.1038/ncomms1385. PMC 3144584. PMID 21750539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144584/. 
  64. ^ Jagannathan B, Elms PJ, Bustamante C, Marqusee S (October 2012). “Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein”. Proceedings of the National Academy of Sciences of the United States of America 109 (44): 17820–5. Bibcode2012PNAS..10917820J. doi:10.1073/pnas.1201800109. PMC 3497811. PMID 22949695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497811/. 
  65. ^ Minde DP, Ramakrishna M, Lilley KS (2018). “Biotinylation by proximity labelling favours unfolded proteins”. bioRxiv. doi:10.1101/274761. 
  66. ^ Compiani M, Capriotti E (December 2013). “Computational and theoretical methods for protein folding”. Biochemistry 52 (48): 8601–24. doi:10.1021/bi4001529. PMID 24187909. 
  67. ^ Structural Biochemistry/Proteins/Protein Folding - Wikibooks, open books for an open world”. en.wikibooks.org. 2016年11月5日閲覧。
  68. ^ Levinthal, Cyrus (1968). “Are there pathways for protein folding?”. Journal de Chimie Physique et de Physico-Chimie Biologique 65: 44–45. Bibcode1968JCP....65...44L. doi:10.1051/jcp/1968650044. オリジナルの2009-09-02時点におけるアーカイブ。. https://web.archive.org/web/20090902211239/http://www.biochem.wisc.edu/courses/biochem704/Reading/Levinthal1968.pdf. 
  69. ^ a b c Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (March 1995). “Funnels, pathways, and the energy landscape of protein folding: a synthesis”. Proteins 21 (3): 167–95. arXiv:chem-ph/9411008. doi:10.1002/prot.340210302. PMID 7784423. 
  70. ^ Leopold PE; Montal M; Onuchic JN (September 1992). “Protein folding funnels: a kinetic approach to the sequence-structure relationship”. Proceedings of the National Academy of Sciences of the United States of America 89 (18): 8721–5. Bibcode1992PNAS...89.8721L. doi:10.1073/pnas.89.18.8721. PMC 49992. PMID 1528885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49992/. 
  71. ^ Sharma, Vivek; Kaila, Ville R.I.; Annila, Arto (2009). “Protein folding as an evolutionary process”. Physica A: Statistical Mechanics and Its Applications 388 (6): 851–62. Bibcode2009PhyA..388..851S. doi:10.1016/j.physa.2008.12.004. 
  72. ^ Robson, Barry; Vaithilingam, Andy (2008). “Protein Folding Revisited”. Molecular Biology of Protein Folding, Part B. Progress in Molecular Biology and Translational Science. 84. pp. 161–202. doi:10.1016/S0079-6603(08)00405-4. ISBN 978-0-12-374595-8. PMID 19121702 
  73. ^ a b c Dill KA, MacCallum JL (November 2012). “The protein-folding problem, 50 years on”. Science 338 (6110): 1042–6. Bibcode2012Sci...338.1042D. doi:10.1126/science.1219021. PMID 23180855. 
  74. ^ a b Fersht AR (February 2000). “Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism”. Proceedings of the National Academy of Sciences of the United States of America 97 (4): 1525–9. Bibcode2000PNAS...97.1525F. doi:10.1073/pnas.97.4.1525. PMC 26468. PMID 10677494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26468/. 
  75. ^ Rizzuti B, Daggett V (March 2013). “Using simulations to provide the framework for experimental protein folding studies”. Archives of Biochemistry and Biophysics 531 (1–2): 128–35. doi:10.1016/j.abb.2012.12.015. PMC 4084838. PMID 23266569. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084838/. 
  76. ^ Schaefer M, Bartels C, Karplus M (December 1998). “Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model”. Journal of Molecular Biology 284 (3): 835–48. doi:10.1006/jmbi.1998.2172. PMID 9826519. 
  77. ^ Jones, David. “Fragment-based Protein Folding Simulations”. University College London. 2020年10月12日閲覧。
  78. ^ Protein folding” (by Molecular Dynamics). 2020年10月12日閲覧。
  79. ^ Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (July 2016). “Coarse-Grained Protein Models and Their Applications”. Chemical Reviews 116 (14): 7898–936. doi:10.1021/acs.chemrev.6b00163. PMID 27333362. 
  80. ^ Kmiecik S, Kolinski A (July 2007). “Characterization of protein-folding pathways by reduced-space modeling”. Proceedings of the National Academy of Sciences of the United States of America 104 (30): 12330–5. Bibcode2007PNAS..10412330K. doi:10.1073/pnas.0702265104. PMC 1941469. PMID 17636132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1941469/. 
  81. ^ Adhikari AN, Freed KF, Sosnick TR (October 2012). “De novo prediction of protein folding pathways and structure using the principle of sequential stabilization”. Proceedings of the National Academy of Sciences of the United States of America 109 (43): 17442–7. Bibcode2012PNAS..10917442A. doi:10.1073/pnas.1209000109. PMC 3491489. PMID 23045636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491489/. 
  82. ^ Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (October 2011). “How fast-folding proteins fold”. Science 334 (6055): 517–20. Bibcode2011Sci...334..517L. doi:10.1126/science.1208351. PMID 22034434. 





固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フォールディング」の関連用語

フォールディングのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フォールディングのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
実用日本語表現辞典実用日本語表現辞典
Copyright © 2024実用日本語表現辞典 All Rights Reserved.
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
Be.BIKEBe.BIKE
Copyright(C) 2001- 2024 CAR MATE MFG.CO.,LTD. All Rights Reserved.
Be.BIKE自転車用語集
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフォールディング (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS