天然変性タンパク質とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 天然変性タンパク質の意味・解説 

天然変性タンパク質

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/20 10:26 UTC 版)

天然変性タンパク質(てんねんへんせいタンパクしつ、: intrinsically disordered proteins、略称: IDP)とは、固定された、もしくは整った(「オーダーした」)三次元構造を持たないタンパク質である[2][3][4]。IDPは、完全に構造をとらない状態から部分的に構造をとる状態までをカバーし、ランダムコイルモルテングロビュール英語版、柔軟なリンカーで連結された複数ドメインタンパク質などが含まれる。IDPはタンパク質の主要なタイプの1つを構成する(ほかは球状タンパク質線維状タンパク質膜タンパク質[5]


  1. ^ “Chapter 2: First Steps of Protein Structure Prediction”. Prediction of Protein Structures, Functions, and Interactions. John Wiley & Sons, Ltd.. (December 18, 2008). pp. 39–62. doi:10.1002/9780470741894.ch2. ISBN 9780470517673. ftp://genesilico.pl/lukaskoz/pdfs/Majorek.pdf 
  2. ^ a b c d “Intrinsically disordered protein”. Journal of Molecular Graphics & Modelling 19 (1): 26–59. (2001). doi:10.1016/s1093-3263(00)00138-8. PMID 11381529. 
  3. ^ “Intrinsically unstructured proteins and their functions”. Nature Reviews. Molecular Cell Biology 6 (3): 197–208. (March 2005). doi:10.1038/nrm1589. PMID 15738986. 
  4. ^ a b “Function and structure of inherently disordered proteins”. Current Opinion in Structural Biology 18 (6): 756–64. (December 2008). doi:10.1016/j.sbi.2008.10.002. PMID 18952168. 
  5. ^ “SCOP2 prototype: a new approach to protein structure mining”. Nucleic Acids Research 42 (Database issue): D310–4. (January 2014). doi:10.1093/nar/gkt1242. PMC: 3964979. PMID 24293656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964979/. 
  6. ^ “Classification of intrinsically disordered regions and proteins”. Chemical Reviews 114 (13): 6589–631. (July 2014). doi:10.1021/cr400525m. PMC: 4095912. PMID 24773235. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095912/. 
  7. ^ “Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications”. Biochemistry 45 (51): 15633–43. (December 2006). doi:10.1021/bi062148m. PMC: 2533273. PMID 17176085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533273/. 
  8. ^ a b “Proteins move! Protein dynamics and long-range allostery in cell signaling”. Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. 83. (2011). pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668 
  9. ^ “At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?”. Proteins 78 (6): 1339–75. (May 2010). doi:10.1002/prot.22654. PMC: 2841229. PMID 20099310. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841229/. 
  10. ^ “Prediction and functional analysis of native disorder in proteins from the three kingdoms of life”. Journal of Molecular Biology 337 (3): 635–45. (March 2004). doi:10.1016/j.jmb.2004.02.002. PMID 15019783. 
  11. ^ “Intrinsically disordered proteins in human diseases: introducing the D2 concept”. Annual Review of Biophysics 37: 215–46. (2008). doi:10.1146/annurev.biophys.37.032807.125924. PMID 18573080. 
  12. ^ “Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder”. Molecular & Cellular Proteomics 7 (7): 1331–48. (July 2008). doi:10.1074/mcp.M700564-MCP200. PMID 18388127. http://www.mcponline.org/content/7/7/1331.full.pdf. 
  13. ^ “Intrinsic disorder in cell-signaling and cancer-associated proteins”. Journal of Molecular Biology 323 (3): 573–84. (October 2002). doi:10.1016/S0022-2836(02)00969-5. PMID 12381310. 
  14. ^ “Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins”. Journal of Molecular Recognition 22 (1): 1–8. (2009). doi:10.1002/jmr.915. PMID 18802931. 
  15. ^ Wilson, Benjamin A.; Foy, Scott G.; Neme, Rafik; Masel, Joanna (24 April 2017). “Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth”. Nature Ecology & Evolution 1 (6): 0146–146. doi:10.1038/s41559-017-0146. PMC: 5476217. PMID 28642936. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476217/. 
  16. ^ Willis, Sara; Masel, Joanna (September 2018). “Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes”. Genetics 210 (1): 303–313. doi:10.1534/genetics.118.301249. PMC: 6116962. PMID 30026186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116962/. 
  17. ^ “Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins”. Current Protein & Peptide Science 13 (1): 34–54. (February 2012). doi:10.2174/138920312799277974. PMID 22044148. 
  18. ^ “Analysis of molecular recognition features (MoRFs)”. Journal of Molecular Biology 362 (5): 1043–59. (October 2006). doi:10.1016/j.jmb.2006.07.087. PMID 16935303. 
  19. ^ “Extended disordered proteins: targeting function with less scaffold”. Trends in Biochemical Sciences 28 (2): 81–5. (February 2003). doi:10.1016/S0968-0004(03)00003-3. PMID 12575995. 
  20. ^ “Dynamic alpha-helices: conformations that do not conform”. Proteins 68 (1): 109–22. (July 2007). doi:10.1002/prot.21328. PMID 17407165. 
  21. ^ “Drawing on disorder: How viruses use histone mimicry to their advantage”. The Journal of Experimental Medicine 215 (7): 1777–1787. (July 2018). doi:10.1084/jem.20180099. PMC: 6028506. PMID 29934321. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028506/. 
  22. ^ “Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V”. Scientific Reports 8 (1): 358. (January 2018). doi:10.1038/s41598-017-18742-8. PMC: 5762688. PMID 29321677. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762688/. 
  23. ^ “Fuzziness: linking regulation to protein dynamics”. Molecular BioSystems 8 (1): 168–77. (January 2012). doi:10.1039/c1mb05234a. PMID 21927770. 
  24. ^ “Dynamic protein-DNA recognition: beyond what can be seen”. Trends in Biochemical Sciences 36 (8): 415–23. (August 2011). doi:10.1016/j.tibs.2011.04.006. PMID 21620710. 
  25. ^ “Extreme disorder in an ultrahigh-affinity protein complex”. Nature 555 (7694): 61–66. (March 2018). doi:10.1038/nature25762. PMID 29466338. 
  26. ^ “Binding Affinity and Function of the Extremely Disordered Protein Complex Containing Human Linker Histone H1.0 and Its Chaperone ProTα”. Biochemistry 57 (48): 6645–6648. (November 2018). doi:10.1021/acs.biochem.8b01075. PMID 30430826. 
  27. ^ a b “Intrinsically disordered proteins from A to Z”. The International Journal of Biochemistry & Cell Biology 43 (8): 1090–103. (August 2011). doi:10.1016/j.biocel.2011.04.001. PMID 21501695. https://zenodo.org/record/895479. 
  28. ^ a b c d Oldfield, C. (2014). “Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions”. Annual Review of Biochemistry 83: 553–584. doi:10.1146/annurev-biochem-072711-164947. 
  29. ^ “Biotinylation by proximity labelling favours unfolded proteins”. bioRxiv. (2018). doi:10.1101/274761. 
  30. ^ Buckle, Ashley M, ed (2013). “Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations”. PLOS ONE 8 (10): e77257. Bibcode2013PLoSO...877257M. doi:10.1371/journal.pone.0077257. PMC: 3793970. PMID 24130866. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793970/. 
  31. ^ Uversky, Vladimir N, ed (2012). “Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp”. PLOS ONE 7 (10): e46147. Bibcode2012PLoSO...746147M. doi:10.1371/journal.pone.0046147. PMC: 3463568. PMID 23056252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463568/. 
  32. ^ “Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding”. Nature Methods 2 (3): 207–12. (March 2005). doi:10.1038/nmeth740. PMID 15782190. 
  33. ^ “Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament”. Biochimica et Biophysica Acta 1854 (5): 381–90. (May 2015). doi:10.1016/j.bbapap.2015.01.004. PMID 25603119. 
  34. ^ “Single-molecule studies of intrinsically disordered proteins”. Chemical Reviews 114 (6): 3281–317. (March 2014). doi:10.1021/cr400297g. PMID 24432838. 
  35. ^ “Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy”. PLOS ONE 9 (1): e86495. (2014). Bibcode2014PLoSO...986495N. doi:10.1371/journal.pone.0086495. PMC: 3901707. PMID 24475132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901707/. 
  36. ^ “Single-molecule studies of intrinsically disordered proteins using solid-state nanopores”. Analytical Chemistry 85 (4): 2449–56. (February 2013). doi:10.1021/ac3035025. PMID 23327569. 
  37. ^ “Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism”. Nature Communications 4 (4): 1705. (2013). Bibcode2013NatCo...4.1705M. doi:10.1038/ncomms2692. PMC: 3644077. PMID 23591872. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644077/. 
  38. ^ “Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy”. ChemPhysChem 9 (13): 1859–66. (September 2008). doi:10.1002/cphc.200800210. PMID 18698566. 
  39. ^ “Protein disorder--a breakthrough invention of evolution?”. Current Opinion in Structural Biology 21 (3): 412–8. (June 2011). doi:10.1016/j.sbi.2011.03.014. PMID 21514145. 
  40. ^ Tompa, P. (2011). “Unstructural biology coming of age”. Current Opinion in Structural Biology 21: 419–425. doi:10.1016/j.sbi.2011.03.12. 
  41. ^ “A practical overview of protein disorder prediction methods”. Proteins 65 (1): 1–14. (October 2006). doi:10.1002/prot.21075. PMID 16856179. 
  42. ^ “Intrinsically disordered proteins in human diseases: introducing the D2 concept”. Annual Review of Biophysics 37: 215–46. (2008). doi:10.1146/annurev.biophys.37.032807.125924. PMID 18573080. 
  43. ^ “Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein”. ACS Chemical Neuroscience 4 (3): 498–508. (March 2013). doi:10.1021/cn3002027. PMC: 3605821. PMID 23374074. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605821/. 
  44. ^ “Protein folding and misfolding”. Nature 426 (6968): 884–90. (December 2003). Bibcode2003Natur.426..884D. doi:10.1038/nature02261. PMID 14685248. 
  45. ^ “Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles”. Journal of Chemical Theory and Computation 8 (9): 3257–3273. (September 2012). doi:10.1021/ct300400x. PMC: 3549273. PMID 23341755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549273/. 
  46. ^ “Computational and theoretical advances in studies of intrinsically disordered proteins”. Current Opinion in Structural Biology 42: 147–154. (February 2017). doi:10.1016/j.sbi.2017.01.006. PMID 28259050. 
  47. ^ “Computer Simulations of Intrinsically Disordered Proteins”. Annual Review of Physical Chemistry 68: 117–134. (May 2017). Bibcode2017ARPC...68..117C. doi:10.1146/annurev-physchem-052516-050843. PMID 28226222. 
  48. ^ “Probing the dynamics of disorder”. Progress in Biophysics and Molecular Biology 128: 57–62. (September 2017). doi:10.1016/j.pbiomolbio.2017.05.008. PMID 28554553. 
  49. ^ “Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain”. Biophysical Journal 101 (6): 1450–8. (September 2011). Bibcode2011BpJ...101.1450T. doi:10.1016/j.bpj.2011.08.003. PMC: 3177054. PMID 21943426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177054/. 
  50. ^ “Constructing ensembles for intrinsically disordered proteins”. Current Opinion in Structural Biology 21 (3): 426–31. (June 2011). doi:10.1016/j.sbi.2011.04.001. PMC: 3112268. PMID 21530234. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112268/. 
  51. ^ “Molecular dynamics simulations of the intrinsically disordered protein amelogenin”. Journal of Biomolecular Structure & Dynamics 35 (8): 1813–1823. (June 2017). doi:10.1080/07391102.2016.1196151. PMID 27366858. 
  52. ^ “Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics”. Journal of Chemical Theory and Computation 11 (6): 2776–82. (June 2015). doi:10.1021/acs.jctc.5b00047. PMID 26575570. 
  53. ^ “The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments”. Scientific Reports 5: 15449. (October 2015). Bibcode2015NatSR...515449G. doi:10.1038/srep15449. PMC: 4620491. PMID 26498066. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620491/. 
  54. ^ Iida, Shinji; Kawabata, Takeshi; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi (2019-03-22). “Multimodal Structural Distribution of the p53 C-Terminal Domain upon Binding to S100B via a Generalized Ensemble Method: From Disorder to Extradisorder” (英語). Journal of Chemical Theory and Computation 15 (4): 2597–2607. doi:10.1021/acs.jctc.8b01042. ISSN 1549-9618. PMID 30855964. 
  55. ^ “Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations” (英語). Journal of Chemical Theory and Computation 10 (6): 2224–31. (June 2014). doi:10.1021/ct500287c. PMID 26580746. 
  56. ^ “Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013)”. Intrinsically Disordered Proteins 1 (1): e25496. (2013). doi:10.4161/idp.25496. PMC: 5424799. PMID 28516015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5424799/. 
  57. ^ “Genealogy of an ancient protein family: the Sirtuins, a family of disordered members”. BMC Evolutionary Biology 13: 60. (March 2013). doi:10.1186/1471-2148-13-60. PMC: 3599600. PMID 23497088. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599600/. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  天然変性タンパク質のページへのリンク

辞書ショートカット

すべての辞書の索引

「天然変性タンパク質」の関連用語

天然変性タンパク質のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



天然変性タンパク質のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの天然変性タンパク質 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS