^Schlick, T. (1996). “Pursuing Laplace's Vision on Modern Computers”. In J. P. Mesirov, K. Schulten and D. W. Sumners. Mathematical Applications to Biomolecular Structure and Dynamics, IMA Volumes in Mathematics and Its Applications. 82. New York: Springer-Verlag. pp. 218–247. ISBN978-0-387-94838-6
^de Laplace, P. S. (1820) (French). Oeuveres Completes de Laplace, Theorie Analytique des Probabilites. Paris, France: Gauthier-Villars
^Tuckerman ME, Berne BJ, Martyna GJ; Berne; Martyna (1991). “Molecular dynamics algorithm for multiple time scales: systems with long range forces”. J Chem Phys94 (10): 6811–6815. Bibcode: 1991JChPh..94.6811T. doi:10.1063/1.460259.
^Sinnott, S. B.; Brenner, D. W. (2012). “Three decades of many-body potentials in materials research”. MRS Bulletin37 (5): 469–473. doi:10.1557/mrs.2012.88.
^Albe, K.; Nordlund, K.; Averback, R. S. (2002). “Modeling metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon”. Phys. Rev. B65 (19): 195124. Bibcode: 2002PhRvB..65s5124A. doi:10.1103/physrevb.65.195124.
^Brenner, D. W. (1990). “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”. Phys. Rev. B42 (15): 9458–9471. Bibcode: 1990PhRvB..42.9458B. doi:10.1103/PhysRevB.42.9458.
^Keith Beardmore and Roger Smith. (1996) Empirical potentials for c-si-h systems with application to C60 interactions with Si crystal surfaces. Phil. Mag. A 74:1439--1466.
^Boris Ni, Ki-Ho Lee, and Susan B Sinnott. (2004) A reactive empirical bond order (rebo) potential for hydrocarbon oxygen interactions. J. Phys.: Condens. Matter 16:7261--7275.
^van Duin, A.; Siddharth Dasgupta, François Lorant and William A. Goddard III; Lorant, Francois; Goddard, William A. (2001). “ReaxFF: A Reactive Force Field for Hydrocarbons”. J. Phys. Chem. A105 (41): 9398. doi:10.1021/jp004368u.
^Daw, M. S.; S. M. Foiles and M. I. Baskes (1993). “The embedded-atom method: a review of theory and applications”. Mat. Sci. And Engr. Rep.9 (7–8): 251–310. doi:10.1016/0920-2307(93)90001-U.
^Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD; Harder; Vorobyov; Roux; MacKerell (2006). “A polarizable model of water for molecular dynamics simulations of biomolecules”. Chem Phys Lett418: 245–249. Bibcode: 2006CPL...418..245L. doi:10.1016/j.cplett.2005.10.135.
^Patel, S.; MacKerell, Jr. AD; Brooks III, Charles L (2004). “CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model”. J Comput Chem25 (12): 1504–1514. doi:10.1002/jcc.20077. PMID15224394.
^Billeter, SR; SP Webb; PK Agarwal; T Iordanov; S Hammes-Schiffer (2001). “Hydride Transfer in Liver Alcohol Dehydrogenase: Quantum Dynamics, Kinetic Isotope Effects, and Role of Enzyme Motion”. J Am Chem Soc123 (45): 11262–11272. doi:10.1021/ja011384b. PMID11697969.
^Smith, A; CK Hall (2001). “Alpha-Helix Formation: Discontinuous Molecular Dynamics on an Intermediate-Resolution Protein Model”. Proteins44 (3): 344–360. doi:10.1002/prot.1100. PMID11455608.
^Ding, F; JM Borreguero; SV Buldyrey; HE Stanley; NV Dokholyan (2003). “Mechanism for the alpha-helix to beta-hairpin transition”. J Am Chem Soc53 (2): 220–228. doi:10.1002/prot.10468. PMID14517973.
^Chakrabarty, A; T Cagin (2010). “Coarse grain modeling of polyimide copolymers”. Polymer51 (12): 2786–2794. doi:10.1016/j.polymer.2010.03.060.
^Nienhaus, Gerd Ulrich (2005). Protein-ligand interactions: methods and applications. pp. 54–56. ISBN978-1-61737-525-5
^Leszczyński, Jerzy (2005). Computational chemistry: reviews of current trends, Volume 9. pp. 54–56. ISBN978-981-256-742-0
^Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal; Swendsen, Robert H.; Kollman, Peter A. (1992). “The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method”. J. Comput. Chem.13 (8): 1011–1021. doi:10.1002/jcc.540130812.
^Averback, R. S.; Diaz de la Rubia, T. (1998). “Displacement damage in irradiated metals and semiconductors”. In H. Ehrenfest and F. Spaepen. Solid State Physics. 51. New York: Academic Press. pp. 281–402
^R. Smith, ed (1997). Atomic & ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge, UK: Cambridge University Press
^Offman, MN; M Krol; B Rost; I Silman; JL Sussman; AH Futerman (2011). “Comparison of a molecular dynamics model with the X-ray structure of the N370S acid-beta-glucosidase mutant that causes Gaucher disease”. Protein Eng. Des. Sel.24 (10): 773–775. doi:10.1093/protein/gzr032. PMID21724649.
^Hu, Han; Sun, Ying. “Molecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface”. Appl. Phys. Lett.14: 263110. Bibcode: 2013ApPhL.103z3110H. doi:10.1063/1.4858469.
^David A Welch, B Layla Mehdi, Hannah J Hatchell, Roland Faller, James E Evans and Nigel D Browning (2015). “Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM”. Advanced Structural and Chemical Imaging1: 1. doi:10.1186/s40679-014-0002-2.
^Shaw, David E.; Maragakis, Paul; Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O.; Eastwood, Michael P.; Bank, Joseph A.; Jumper, John M. et al. (2010). “Atomic-Level Characterization of the Structural Dynamics of Proteins”. Science330 (6002): 341–346. Bibcode: 2010Sci...330..341S. doi:10.1126/science.1187409. PMID20947758.
^Goel S, Luo; Reuben R L. “Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide”. Comput. Mater. Sci51.
M. P. Allen, D. J. Tildesley (1989) Computer simulation of liquids. Oxford University Press. ISBN 0-19-855645-4.
J. A. McCammon, S. C. Harvey (1987) Dynamics of Proteins and Nucleic Acids. Cambridge University Press. ISBN 0-521-30750-3 (hardback).
D. C. Rapaport (1996) The Art of Molecular Dynamics Simulation. ISBN 0-521-44561-2.
M. Griebel; S. Knapek; G. Zumbusch (2007). Numerical Simulation in Molecular Dynamics. Berlin, Heidelberg: Springer. ISBN978-3-540-68094-9
Frenkel, Daan; Smit, Berend (2002) [2001]. Understanding Molecular Simulation : from algorithms to applications. San Diego: Academic Press. ISBN0-12-267351-4
J. M. Haile (2001) Molecular Dynamics Simulation: Elementary Methods. ISBN 0-471-18439-X
R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, 2002, ISBN 0-444-51082-6
Oren M. Becker, Alexander D. Mackerell, Jr., Benoît Roux, Masakatsu Watanabe (2001) Computational Biochemistry and Biophysics. Marcel Dekker. ISBN 0-8247-0455-X.
Andrew Leach (2001) Molecular Modelling: Principles and Applications. (2nd Edition) Prentice Hall. ISBN 978-0-582-38210-7.
Tamar Schlick (2002) Molecular Modeling and Simulation. Springer. ISBN 0-387-95404-X.
William Graham Hoover (1991) Computational Statistical Mechanics, Elsevier, ISBN 0-444-88192-1.
D. J. Evans and G. P. Morriss (2008) Statistical Mechanics of Nonequilibrium Liquids, Second Edition, Cambridge University Press, ISBN 978-0-521-85791-8.
All text is available under the terms of the GNU Free Documentation License. この記事は、ウィキペディアの分子動力学法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。