分子動力学法とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 分子動力学法の意味・解説 

分子動力学法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/02 01:14 UTC 版)

単純な系における分子動力学シミュレーションの例: 単一のCu原子のCu (001) 表面への堆積。それぞれの円は単一原子の位置を示す。現在のシミュレーションにおいて用いられる実際の原子的相互作用は図中の2次元剛体球の相互作用よりも複雑である。
分子動力学法は生物物理学的系をシミュレーションするためにしばしば用いられる。ここで描かれているのは水の100 psシミュレーションである。

分子動力学(ぶんしどうりきがくほう、: molecular dynamics、MD法)は、原子ならびに分子物理的な動きコンピューターシミュレーション手法である。原子および分子はある時間の間相互作用することが許され、これによって原子の動的発展の光景が得られる。最も一般的なMD法では、原子および分子のトラクジェクトリは、相互作用する粒子の系についての古典力学におけるニュートンの運動方程式数値的に解くことによって決定される。この系では粒子間のおよびポテンシャルエネルギー原子間ポテンシャル分子力学力場)によって定義される。MD法は元々は1950年代末に理論物理学分野で考え出されたが[1][2]、今日では主に化学物理学材料科学生体分子のモデリングに適用されている。系の静的、動的安定構造や、動的過程(ダイナミクス)を解析する手法。

分子の系は莫大な数の粒子から構成されるため、このような複雑系の性質を解析的に探ることは不可能である。MDシミュレーションは 数値的手法を用いることによってこの問題を回避する。しかしながら、長いMDシミュレーションは数学的に悪条件であり、数値積分において累積誤差を生成してしまう。これはアルゴリズムとパラメータの適切な選択によって最小化することができるが、完全に取り除くことはできない。

エルゴード仮説に従う系では、単一の分子動力学シミュレーションの展開は系の巨視的熱力学的性質を決定するために使うことができる。エルゴード系の時間平均はミクロカノニカルアンサンブル(小正準集団)平均に対応する。MDは自然の力をアニメーションすることによって未来を予測する、原子スケールの分子の運動についての理解を可能にする「数による統計力学」や「ニュートン力学ラプラス的視点」とも称されている[3][4]

MDシミュレーションでは等温、定圧、等温・定圧、定エネルギー、定積、定ケミカルポテンシャル、グランドカノニカルといった様々なアンサンブル(統計集団)の計算が可能である。また、結合長や位置の固定など様々な拘束条件を付加することもできる。計算対象は、バルク表面界面クラスターなど多様な系を扱える。

MD法で扱える系の規模としては、最大で数億原子からなる系の計算例がある。通常の計算規模は数百から数万原子(分子、粒子)程度である。

通常、ポテンシャル関数は、原子-原子の二体ポテンシャルを組み合わせて表現し、これを計算中に変更しない。そのため化学反応のように、原子間結合の生成・開裂を表現するには、何らかの追加の工夫が必要となる。また、ポテンシャルは経験的・半経験的なパラメータから求められる。

こうしたポテンシャル面の精度の問題を回避するため、ポテンシャル面を電子状態の第一原理計算から求める手法もある。このような方法は、第一原理分子動力学法〔量子(ab initio)分子動力学法〕と呼ばれる。この方法では、ポテンシャル面がより正確なものになるが、扱える原子数は格段に減る(スーパーコンピュータを利用しても、最大で約千個程度)。

また第一原理分子動力学法の多くは、電子状態が常に基底状態であることを前提としているものが多く、電子励起状態や電子状態間の非断熱遷移を含む現象の記述は、こうした手法であってもなお困難である。

歴史

モンテカルロシミュレーションの先行する成功に続いて、1950年代末にアルダーとウェインライトによって[1]、1960年代にラーマンによって[2]それぞれ独立にMD法が開発された。1957年、アルダーおよびウェインライトは剛体球間の弾性衝突を完全にシミュレーションするためにIBM 704計算機を使用した[1]。1960年、ギブソンらはボルン=マイヤー型の反発相互作用と凝集面積力を用いることによって固体の放射線障害をシミュレーションした[5]。1964年、ラーマンはレナード=ジョーンズ・ポテンシャルを利用した液体アルゴンの画期的シミュレーションを発表した。自己拡散係数といった系の性質の計算は実験データと遜色がなかった[2]

年表

応用領域

理論物理学分野で始まったMD法は材料科学において人気を得て、1970年代からは生化学および生物物理学での人気を得ている。MDはX線結晶構造解析あるいはNMR分光法から得られた実験的拘束情報に基づいてタンパク質やその他の高分子の三次元構造を洗練するために頻繁に用いられる。物理学において、MDは薄膜成長やイオン-サブプランテーションといった直接観測することができない原子レベルの現象のダイナミクスを調べるために使われる。また、まだ作成されていないあるいは作成することができないナノテクノロジー装置の物理的性質を調べるためにも使われる。生物物理学および構造生物学では、MD法はリガンドドッキング脂質二重膜のシミュレーション、ホモロジーモデリング、さらにランダムコイルからポリペプチド鎖折り畳みをシミュレーションすることによってタンパク質構造をab initioに予測するためにも頻繁に適用されている。

シミュレーション設計の制約

分子動力学シミュレーションの設計は利用可能な計算機能力を考慮しなければならない。計算が合理的な時間で終了できるように、シミュレーションサイズ(n = 粒子の数)、時間ステップ、総シミュレーション時間が選択されなければならない。しかしながら、シミュレーションは調べる自然の過程の時間スケールにとって適切なように十分長くなければならない。シミュレーションから統計的に妥当な結論を得るためには、シミュレーションされる時間は自然の過程の速度論と一致しなければならない。さもなければ、MD法は人間が一歩進むよりも短い時間を観察して人間がどうやって歩くのかについて結論付けるのと同じである。タンパク質およびDNAの動力学に関するほとんどの科学論文はナノ秒(10−9 s)からマイクロ秒(10−6 s)のシミュレーションからのデータを用いている。これらのシミュレーションを得るためには、複数CPU日からCPU年が必要である。並列アルゴリズムによって負荷をCPU間で分散することができる。この例としては空間的分解アルゴリズムや力分解アルゴリズムがある[6]

古典的MDシミュレーションの間、CPUを消費するほとんどのタスクは粒子の内部座標の関数としてのポテンシャルの評価である。このエネルギー評価内で最も計算コストが高いのが非結合(非共有結合)部分である。ランダウのO-記法では、全ての対静電相互作用およびファンデルワールス相互作用があらわに考慮されるとすると、一般的な分子動力学シミュレーションは

ナノポア(外径 6.7 nm)中の3分子から構成される人工分子モーターの分子動力学シミュレーション(250 K)。

分子動力学は多くの科学分野で使われている。

  • 単純化された生物学的折り畳み過程の最初のMDシミュレーションは1975年に発表された。Nature誌で発表されたそのシミュレーションは現代のタンパク質折り畳み計算の広大な領域への道を開いた[32]
  • 生物学的過程の最初のMDシミュレーションは1976年に発表された。Nature誌で発表されたそのシミュレーションはタンパク質の運動が単なる飾りではなく機能に必須であることの理解への道を開いた[33]
  • MDはheat spike regimeにおける衝突カスケード、すなわちエネルギー中性子とイオン放射が固体および固体表面上で持つ効果を取り扱うための標準的手法である[34][35]
  • MDシミュレーションはゴーシェ病の原因である最も一般的なタンパク質変異N370Sの分子基盤を予測することにうまく応用された[36]。後続の論文では、これらの目隠し予測が同じ変異についての実験結果と驚く程に高い相関を見せることが示された[37]
  • MDシミュレーションは金属表面上の水薄膜の分離圧に対する表面電荷の影響について調べるために用いられている[38]
  • MDシミュレーションは透過型電子顕微鏡の画像特徴を理解するためにマルチスライス画像シミュレーションと共に用いられる[39]

以下の生物物理学的例は非常に大きな系(完全なウイルス)あるいは非常に長いシミュレーション時間(1.112ミリ秒まで)のシミュレーションを行うための注目に値する成果を示している。

  • 完全なサテライトタバコモザイクウイルス(STMV)のMDシミュレーション(2006年、規模: 100万原子、シミュレーション時間: 50ナノ秒、プログラム: NAMD)。このウイルスは小さい20面体植物ウイルスであり、タバコモザイクウイルス (TMV) による感染の症状を悪化させる。分子動力学シミュレーションは、ウイルス集合の機構を詳細に調べるために用いられた。全STMV粒子はウイルスカプシド(被覆)を作り上げる単一タンパク質の同一の複製物60個と1063ヌクレオチドの一本鎖RNAゲノムから構成される。1つの重要な発見は、RNAが内部にない時はカプシドが非常に不安定であるということである。このシミュレーションは2006年のデスクトップコンピュータ1台では完了するのに約35年を要する。したがって、シミュレーションは並列に接続した多数のプロセッサによって行われた[40]
  • ビリンタンパク質の頭部断片の全原子力場による折り畳みシミュレーション(2006年、規模: 2万原子、シミュレーション時間: 500マイクロ秒、プログラム: Folding@home)。このシミュレーションは参加した世界中のパーソナルコンピュータの20万CPU上で実行された。これらのコンピュータにはFolding@homeプログラムがインストールされていた。ビリン頭部タンパク質の動力学的特性は、連続したリアルタイムコミュニケーションを行わないCPUによる多くの独立した短時間のシミュレーションを用いることによって詳細に調べられた。使われた1つの手法が、特定の開始コンホメーションの折り畳みがほどける前の折り畳みの確率を測定するPfold値解析である。Pfoldは遷移状態構造と折り畳み経路に沿ったコンホメーションの規則化に関する情報を与える。Pfold計算におけるそれぞれのトラクジェクトリは比較的短くてもよいが、多くの独立したトラクジェクトリが必要である[41]
  • 長い連続トラクジェクトリシミュレーションが、超並列スーパーコンピュータアントン上で実行された。発表された最長のアントンを用いて実行されたシミュレーション結果は355 KにおけるNTL9の1.112ミリ秒シミュレーションである。2番目は、同じ構造について独立して行われた1.073ミリ秒シミュレーションである[42]。『How Fast-Folding Proteins Fold』において、研究者のKresten Lindorff-Larsen、Stefano Piana、Ron O. Dror、David E. Shawは「12種類の構造的に多様なタンパク質の折り畳みに内在する一連の一般原理を明らかにする100 μ秒から1 m秒の間の範囲に渡る原子レベルでの分子動力学シミュレーションの結果」について議論した。専用のカスタムハードウェアによって可能になったこれらの多様な長いトラクジェクトリの調査から、彼らは「ほとんどの場合において、折り畳みは、非折り畳み状態において形成される要素の傾向と高度に相関した順序でネイティブ構造の要素が現われる単一の支配的経路を取る」と結論付けた[42]。別の研究において、300 Kにおけるウシ膵臓トリプシンインヒビター(BPTI)のネイティブ状態動力学の1.031ミリ秒シミュレーションを行うためにアントンが使われた[43]
  • これらの分子シミュレーションは、材料除去の機構や道具の形状、温度、切断速度や切断力といった加工パラメータの影響について理解するために用いられている[44]。また、数層のグラフェン[45][46]やカーボンナノスクロールの剥離の背後にある機構を調べるためにも用いられた。

分子動力学アルゴリズム

積分器

短距離相互作用アルゴリズム

長距離相互作用アルゴリズム

並列化戦略

  • 領域分割法

分子動力学シミュレーションソフトウエアパッケージ

脚注

  1. ^ a b c Alder, B. J.; T. E. Wainwright (1959). “Studies in Molecular Dynamics. I. General Method”. J. Chem. Phys. 31 (2): 459. Bibcode1959JChPh..31..459A. doi:10.1063/1.1730376. 
  2. ^ a b c Rahman, A. (19 October 1964). “Correlations in the Motion of Atoms in Liquid Argon”. Physical Review 136 (2A): A405–A411. Bibcode1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405. 
  3. ^ Schlick, T. (1996). “Pursuing Laplace's Vision on Modern Computers”. In J. P. Mesirov, K. Schulten and D. W. Sumners. Mathematical Applications to Biomolecular Structure and Dynamics, IMA Volumes in Mathematics and Its Applications. 82. New York: Springer-Verlag. pp. 218–247. ISBN 978-0-387-94838-6 
  4. ^ de Laplace, P. S. (1820) (French). Oeuveres Completes de Laplace, Theorie Analytique des Probabilites. Paris, France: Gauthier-Villars 
  5. ^ Gibson, J B; Goland, A N; Milgram, M; Vineyard, G H (1960). “Dynamics of Radiation Damage”. Phys. Rev. 120: 1229–1253. Bibcode1960PhRv..120.1229G. doi:10.1103/PhysRev.120.1229. 
  6. ^ Steve Plimpton. “Molecular Dynamics - Parallel Algorithms”. 2015年7月22日閲覧。
  7. ^ Streett WB, Tildesley DJ, Saville G; Tildesley; Saville (1978). “Multiple time-step methods in molecular dynamics”. Mol Phys 35 (3): 639–648. Bibcode1978MolPh..35..639S. doi:10.1080/00268977800100471. 
  8. ^ Tuckerman ME, Berne BJ, Martyna GJ; Berne; Martyna (1991). “Molecular dynamics algorithm for multiple time scales: systems with long range forces”. J Chem Phys 94 (10): 6811–6815. Bibcode1991JChPh..94.6811T. doi:10.1063/1.460259. 
  9. ^ Tuckerman ME, Berne BJ, Martyna GJ; Berne; Martyna (1992). “Reversible multiple time scale molecular dynamics”. J Chem Phys 97 (3): 1990–2001. Bibcode1992JChPh..97.1990T. doi:10.1063/1.463137. 
  10. ^ Sugita, Yuji; Yuko Okamoto (1999). “Replica-exchange molecular dynamics method for protein folding”. Chem Phys Letters 314: 141–151. Bibcode1999CPL...314..141S. doi:10.1016/S0009-2614(99)01123-9. 
  11. ^ Sinnott, S. B.; Brenner, D. W. (2012). “Three decades of many-body potentials in materials research”. MRS Bulletin 37 (5): 469–473. doi:10.1557/mrs.2012.88. 
  12. ^ Albe, K.; Nordlund, K.; Averback, R. S. (2002). “Modeling metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon”. Phys. Rev. B 65 (19): 195124. Bibcode2002PhRvB..65s5124A. doi:10.1103/physrevb.65.195124. 
  13. ^ Brenner, D. W. (1990). “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”. Phys. Rev. B 42 (15): 9458–9471. Bibcode1990PhRvB..42.9458B. doi:10.1103/PhysRevB.42.9458. 
  14. ^ Keith Beardmore and Roger Smith. (1996) Empirical potentials for c-si-h systems with application to C60 interactions with Si crystal surfaces. Phil. Mag. A 74:1439--1466.
  15. ^ Boris Ni, Ki-Ho Lee, and Susan B Sinnott. (2004) A reactive empirical bond order (rebo) potential for hydrocarbon oxygen interactions. J. Phys.: Condens. Matter 16:7261--7275.
  16. ^ van Duin, A.; Siddharth Dasgupta, François Lorant and William A. Goddard III; Lorant, Francois; Goddard, William A. (2001). “ReaxFF: A Reactive Force Field for Hydrocarbons”. J. Phys. Chem. A 105 (41): 9398. doi:10.1021/jp004368u. 
  17. ^ Tersoff, J. (1989). “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”. Phys. Rev. B 39 (8): 5566–5568. Bibcode1989PhRvB..39.5566T. doi:10.1103/PhysRevB.39.5566. 
  18. ^ Daw, M. S.; S. M. Foiles and M. I. Baskes (1993). “The embedded-atom method: a review of theory and applications”. Mat. Sci. And Engr. Rep. 9 (7–8): 251–310. doi:10.1016/0920-2307(93)90001-U. 
  19. ^ Cleri, F.; V. Rosato (1993). “Tight-binding potentials for transition metals and alloys”. Phys. Rev. B 48: 22–33. Bibcode1993PhRvB..48...22C. doi:10.1103/PhysRevB.48.22. 
  20. ^ Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD; Harder; Vorobyov; Roux; MacKerell (2006). “A polarizable model of water for molecular dynamics simulations of biomolecules”. Chem Phys Lett 418: 245–249. Bibcode2006CPL...418..245L. doi:10.1016/j.cplett.2005.10.135. 
  21. ^ Patel, S.; MacKerell, Jr. AD; Brooks III, Charles L (2004). “CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model”. J Comput Chem 25 (12): 1504–1514. doi:10.1002/jcc.20077. PMID 15224394. 
  22. ^ こういった手法のための方法論はウォーシェルと共同研究者らによって発表された。近年、アリー・ウォーシェル南カリフォルニア大学)、Weitao Yang(デューク大学)、Sharon Hammes-Schiffer(ペンシルベニア州立大学)、ドナルド・トゥルーラーおよびJiali Gao(ミネソタ大学)、Kenneth Merz(フロリダ大学)を含む複数のグループによって開拓された。
  23. ^ Billeter, SR; SP Webb; PK Agarwal; T Iordanov; S Hammes-Schiffer (2001). “Hydride Transfer in Liver Alcohol Dehydrogenase: Quantum Dynamics, Kinetic Isotope Effects, and Role of Enzyme Motion”. J Am Chem Soc 123 (45): 11262–11272. doi:10.1021/ja011384b. PMID 11697969. 
  24. ^ Smith, A; CK Hall (2001). “Alpha-Helix Formation: Discontinuous Molecular Dynamics on an Intermediate-Resolution Protein Model”. Proteins 44 (3): 344–360. doi:10.1002/prot.1100. PMID 11455608. 
  25. ^ Ding, F; JM Borreguero; SV Buldyrey; HE Stanley; NV Dokholyan (2003). “Mechanism for the alpha-helix to beta-hairpin transition”. J Am Chem Soc 53 (2): 220–228. doi:10.1002/prot.10468. PMID 14517973. 
  26. ^ Paci, E; M Vendruscolo; M Karplus (2002). “Validity of Go Models: Comparison with a Solvent-Shielded Empirical Energy Decomposition”. Biophys J 83 (6): 3032–3038. Bibcode2002BpJ....83.3032P. doi:10.1016/S0006-3495(02)75308-3. PMC 1302383. PMID 12496075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302383/. 
  27. ^ Chakrabarty, A; T Cagin (2010). “Coarse grain modeling of polyimide copolymers”. Polymer 51 (12): 2786–2794. doi:10.1016/j.polymer.2010.03.060. 
  28. ^ Nienhaus, Gerd Ulrich (2005). Protein-ligand interactions: methods and applications. pp. 54–56. ISBN 978-1-61737-525-5 
  29. ^ Leszczyński, Jerzy (2005). Computational chemistry: reviews of current trends, Volume 9. pp. 54–56. ISBN 978-981-256-742-0 
  30. ^ Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal; Swendsen, Robert H.; Kollman, Peter A. (1992). “The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method”. J. Comput. Chem. 13 (8): 1011–1021. doi:10.1002/jcc.540130812. 
  31. ^ Bartels, Christian (2000). “Analyzing biased Monte Carlo and molecular dynamics simulations”. Chem. Phys. Lett. 331 (5–6): 446–454. Bibcode2000CPL...331..446B. doi:10.1016/S0009-2614(00)01215-X. 
  32. ^ Levitt, M; A Warshel (1975). “Computer Simulations of Protein Folding”. Nature 253 (5494): 694–8. Bibcode1975Natur.253..694L. doi:10.1038/253694a0. PMID 1167625. 
  33. ^ Warshel, A (1976). “Bicycle-pedal Model for the First Step in the Vision Process”. Nature 260 (5553): 679–683. Bibcode1976Natur.260..694B. doi:10.1038/260679a0. 
  34. ^ Averback, R. S.; Diaz de la Rubia, T. (1998). “Displacement damage in irradiated metals and semiconductors”. In H. Ehrenfest and F. Spaepen. Solid State Physics. 51. New York: Academic Press. pp. 281–402 
  35. ^ R. Smith, ed (1997). Atomic & ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge, UK: Cambridge University Press 
  36. ^ Offman, MN; M Krol; I Silman; JL Sussman; AH Futerman (2010). “Molecular basis of reduced glucosylceramidase activity in the most common Gaucher disease mutant, N370S”. J. Biol. Chem. 285 (53): 42105–42114. doi:10.1074/jbc.M110.172098. PMC 3009936. PMID 20980259. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009936/. 
  37. ^ Offman, MN; M Krol; B Rost; I Silman; JL Sussman; AH Futerman (2011). “Comparison of a molecular dynamics model with the X-ray structure of the N370S acid-beta-glucosidase mutant that causes Gaucher disease”. Protein Eng. Des. Sel. 24 (10): 773–775. doi:10.1093/protein/gzr032. PMID 21724649. 
  38. ^ Hu, Han; Sun, Ying. “Molecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface”. Appl. Phys. Lett. 14: 263110. Bibcode2013ApPhL.103z3110H. doi:10.1063/1.4858469. 
  39. ^ David A Welch, B Layla Mehdi, Hannah J Hatchell, Roland Faller, James E Evans and Nigel D Browning (2015). “Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM”. Advanced Structural and Chemical Imaging 1: 1. doi:10.1186/s40679-014-0002-2. 
  40. ^ Freddolino P, Arkhipov A, Larson SB, McPherson A, Schulten K. “Molecular dynamics simulation of the Satellite Tobacco Mosaic Virus (STMV)”. Theoretical and Computational Biophysics Group. University of Illinois at Urbana Champaign. 2015年8月26日閲覧。
  41. ^ The Folding@Home Project and recent papers published using trajectories from it. Vijay Pande Group. Stanford University
  42. ^ a b Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O.; Shaw, David E. (2011). “How Fast-Folding Proteins Fold”. Science 334 (6055): 517–520. Bibcode2011Sci...334..517L. doi:10.1126/science.1208351. PMID 22034434. 
  43. ^ Shaw, David E.; Maragakis, Paul; Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O.; Eastwood, Michael P.; Bank, Joseph A.; Jumper, John M. et al. (2010). “Atomic-Level Characterization of the Structural Dynamics of Proteins”. Science 330 (6002): 341–346. Bibcode2010Sci...330..341S. doi:10.1126/science.1187409. PMID 20947758. 
  44. ^ Goel S, Luo; Reuben R L. “Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide”. Comput. Mater. Sci 51. 
  45. ^ Jayasena, Buddhika; Subbiah Sathyan (2011). “A novel mechanical cleavage method for synthesizing few-layer graphenes”. Nanoscale Research Letters 6 (1): 95. Bibcode2011NRL.....6...95J. doi:10.1186/1556-276X-6-95. PMC 3212245. PMID 21711598. http://www.nanoscalereslett.com/content/6/1/95. 
  46. ^ Jayasena, B; Reddy C.D; Subbiah S. “Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation”. Nanotechnology. 24 (20): 205301. Bibcode2013Nanot..24t5301J. doi:10.1088/0957-4484/24/20/205301. http://iopscience.iop.org/0957-4484/24/20/205301/. 

参考文献

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「分子動力学法」の関連用語

分子動力学法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



分子動力学法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの分子動力学法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS