モンテカルロ法とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 言葉 > 表現 > 方法 > モンテカルロ法の意味・解説 

モンテカルロ‐ほう〔‐ハフ〕【モンテカルロ法】


モンテカルロ法

読み方モンテカルロほう
別名:モンテカルロ解析
【英】Monte Carlo method

モンテカルロ法とは、確率論的問題解析するための手法で、大量乱数用いて何度もシミュレーション行なうことによって近似解求め計算手法のことである。

モンテカルロ法では、対象となる条件式に、コンピュータ発生させた乱数あてはめる操作繰り返すことによって様々な解のサンプル大量に採取していく。解析的手法によって解を得ることが困難な問題でも、膨大な量のシミュレーション繰り返すことによって、解の値に接近してゆくことができる。

モンテカルロ法には、精度の高い近似解得ようとすればするほど膨大な回数計算必要になるという困難があった。コンピュータによって多量乱数生成し多量演算短時間処理し演算結果統計まで行ってしまうことによって、非常に効率的な解析を可能とした。

モンテカルロ法は第二次大戦中コンピューターの父と呼ばれるジョン・フォン・ノイマンJohn Luis von Neumann)によって、中性子物質中を動き回る様子を探るために考案されたといわれている。なお、当初から通称として呼ばれていたモンテカルロの名は、モナコ公国首都モンテカルロにちなんだものであると言われている。

情報処理のほかの用語一覧
アルゴリズム:  LRU  Levy曲線  モード  モンテカルロ法  Nクイーン問題  ラウンドロビンアルゴリズム  連結リスト

モンテカルロ法 Monte Carlo Method

  確率的な現象利用して各種数値計算行い問題の解や法則性などを得る方法経済評価における不確定要素を扱うための最も一般的なシミュレーション手法である。
モンテカルロ法
分野 一般掘削用語2
同義語  
関連用語  
類似語  
略語  
モンテカルロ法

モンテカルロ法

読み方もんてかるろほう
【英】:Monte Carlo method

概要

乱数使って実験する方法のこと. 第二次世界大戦中原爆開発に関する極秘プロジェクトを示す符丁として, フォンノイマン等がカジノ有名なモンテカルロ因んで命名したとされている.本来は, 確率的な変動含まない問題を解くのに乱数利用する方法のことであったが, 現在では乱数を使う実験総称として使われることが多い.

詳説

 システム特性値などを推定するために, 適当なモデル乱数使って実験し, 大数の法則中心極限定理などを利用して推測を行う方法のこと. システム確率的な変動内在する場合だけでなく, 確定的な問題を解くためにも使われる.

 モンテカルロ法原理簡単な例で示そう. 推定した特性値\theta \,とし, これは既知分布関数 F(y) \,を持つ確率変数 Y \,関数 g(Y) \,平均値等しいものとすれば,



\theta = E[g(Y)]=\int_{-\infty}^\infty g(y)\mathrm{d}F(y) =
\int_0^1 h(u) \mathrm{d}u, \,


と書ける. ただし, h(u)=g(F^{-1}(u)) \,である. そこで, 区間[0,1]上の一様乱数 U_1, U_2, \cdots, U_N \,発生し, 算術平均



A_1(N) = \sum_{i=1}^N h(U_i)/N \,


\theta \,推定値とすることが考えられる. A_1(N) \,\theta \,不偏推定量であり, 分散


V(A_1(N)) = \frac{\sigma^2}N, \ \ \ \ \ 
\sigma^2 = \int_0^1 h^2(x) \mathrm{d}x-\theta^2 \,


となる. したがって, 推定量 A_1(N) \,含まれる誤差標準偏差\sigma/\sqrt N \,であり, 精度十進で1桁上げるためには, サンプルN \,10倍に増やさなければならない. このように, モンテカルロ法の収束は遅いので, これを改善するための方法種々提案されており, 分散減少法総称されている. ただし, これらは 1/\sqrt N \,というオーダー改善するものではなく, 比例係数小さくするための工夫である.

重点サンプリング

 積分区間から一様にサンプルをとるのではなく, 重要と考えられる部分(h(x) \,絶対値大き部分)により多く重みをおく密度関数w(x) \,に従う乱数X_1,\cdots, \ \ X_N \,発生し,



A_2(N) = \frac 1 N \sum_{i=1}^N \frac{h(X_i)}{w(X_i)} \,


\theta \,推定する. w(x) \,\left| h(x) \right| \,比例するように選べれば分散最小となるので, なるべくそれに近くなるように工夫する.


制御変量法

 \theta \,対するひとつの不偏推定量Y \,とする. Y \,相関があって平均値\zeta \,既知確率変数Z \,のことを, Y \,制御変量という. \alpha \,定数として



Y_\alpha = Y-\alpha(Z-\zeta) \,


と定義すれば, Y_\alpha \,\theta \,不偏推定量となり, その分散は\alpha^* = \mathrm{Cov}(Y, Z)/V(Z) \,のとき最小となり, 最小値



V(Y_{\alpha^*})=(1-\rho^2)V(Y) \,


である. ここで\rho \,Y \,Z \,相関係数であるから, Y \,相関の強い制御変量を選ぶほど効果的である.

 定積分の例では, h(u) \,に近い関数h_0(u) \,で, その積分の値\zeta \,正確に計算できるものを選び,



Y_\alpha = h(u)-\alpha(h_0(u)-\zeta) \,


に対して単純な一様サンプリング適用する.

負相関変量法

 \theta \,不偏推定量Y \,平均値が同じで負の相関を持つ変量Z \,利用して, W=(Y+Z)/2 \,\theta \,推定量とする. この分散は, Y \,に対して2回独立サンプルをとって平均する場合分散より小さくなる. 定積分の例では, もしh(u) \,単調な関数ならば, Y=h(U),\;\;\;Z=h(1-U) \,とするとよい.

共通乱数法

 二つ特性値\theta,\phi \,それぞれ確率変数X,Y \,に関するモンテカルロ実験によって推定し, 比較したいものとし, \theta=E[X], \phi=E[Y] \,とする.



V(X-Y)=V(X)+V(Y)-2 \mathrm{Cov}(X,Y) \,


であるから, {\mathrm{Cov}}(X,Y) \,大きいほど推定精度良くなる. X \,Y \,分布関数それぞれF,G \,とし, X \,Y \,逆関数法作るものとする. このとき, X \,Y \,用に別々の一様乱数列を使う代りに, ひとつの乱数列\{U\} \,使って, X=F^{-1}(U), Y=G^{-1}(U) \,とすれば, \mathrm{Cov}(X,Y) \,最大となる. これが共通乱数法の原理である.



参考文献

[1] 伏見正則, 『確率的方法シミュレーション』(岩波講座 応用数学), 岩波書店, 1994.

[2] G. S. Fishman, Monte Carlo-Concepts, Algorithms, and Applications, Springer, 1996.

[3] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 2nd. ed., McGraw-Hill, 1991.


モンテカルロ法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/23 07:33 UTC 版)

モンテカルロ法モンテカルロほう: Monte Carlo methodMC)とはシミュレーション数値計算乱数を用いて行う手法の総称。元々は、中性子が物質中を動き回る様子を探るためにスタニスワフ・ウラムが考案しジョン・フォン・ノイマンにより命名された手法。カジノで有名な国家モナコ公国の4つの地区(カルティ)の1つであるモンテカルロから名付けられた。ランダム法とも呼ばれる。




「モンテカルロ法」の続きの解説一覧

モンテカルロ法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/10 02:35 UTC 版)

モンテカルロ木探索」の記事における「モンテカルロ法」の解説

他のアプローチでは解決不可能または困難な決定問題ランダム性使用するモンテカルロ法で解決する試みは、1940年代始まった。ブルース・アブラムソンは、1987年博士論文で、通常の静的評価関数ではなくミニマックス法ランダムなゲームプレイアウトに基づく期待結果モデル組み合わせた。アブラムソンは、期待結果モデルは「正確・高精度簡単に推定でき、効率的に計算でき、ドメイン依存しないことが示された」と述べた。アブラムソンは、三目並べリバーシチェス機械生成評価関数詳細に実験したこの方法は、1989年に、W・エルテル・シューマンとC・ズットナーによって、定理自動証明分野適用され幅優先探索深さ優先探索反復深化などの探索アルゴリズムにおいて、指数関数的な探索時間改善することが発見された。 1992年、B・ブルークマンは、コンピュータ碁のプログラム初めてそれを採用したチャンらは、マルコフ決定プロセスモデルのアダプティブマルチステージサンプリング(AMSアルゴリズムで「適応型」サンプリング選択して、「再帰的ロールアウトバックトラック」のアイデア提案したAMSは、サンプリング/シミュレーションモンテカルロツリー構築におけるUCBベース探査と開発アイデア探求した最初試みであり、UCT上位信頼性ツリー)のメインシードだった。

※この「モンテカルロ法」の解説は、「モンテカルロ木探索」の解説の一部です。
「モンテカルロ法」を含む「モンテカルロ木探索」の記事については、「モンテカルロ木探索」の概要を参照ください。

ウィキペディア小見出し辞書の「モンテカルロ法」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「モンテカルロ法」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



モンテカルロ法と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

「モンテカルロ法」に関係したコラム

辞書ショートカット

すべての辞書の索引

「モンテカルロ法」の関連用語

モンテカルロ法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



モンテカルロ法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
株式会社ストライク株式会社ストライク
Copyright Strike Co., Ltd. All rights reserved.
株式会社シクミカ株式会社シクミカ
Copyright (C) 2024 株式会社シクミカ. All Rights Reserved.
IT用語辞典バイナリIT用語辞典バイナリ
Copyright © 2005-2024 Weblio 辞書 IT用語辞典バイナリさくいん。 この記事は、IT用語辞典バイナリの【モンテカルロ法】の記事を利用しております。
日本電子株式会社日本電子株式会社
Copyright(C)1996-2024 JEOL Ltd., All Rights Reserved.
石油技術協会石油技術協会
Copyright © 2024, 石油技術協会 作井技術委員会 作井マニュアル分科会
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2024 (社)日本オペレーションズ・リサーチ学会 All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのモンテカルロ法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのモンテカルロ木探索 (改訂履歴)、強化学習 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS