ギブスサンプリング
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/25 20:20 UTC 版)
統計学と統計物理学において、ギブスサンプリング(英: Gibbs sampling, Gibbs sampler)は、直接サンプリングが難しい確率分布の代わりにそれを近似するサンプル列を生成するMCMC法(Markov chain Monte Carlo algorithm)の1つである。この生成された数列は、同時分布や周辺分布や期待値などの積分計算を近似するために用いられる。通常は観測として与えられている変数に関してはサンプリングをする必要はない。ギブスサンプリングは統計的推定やベイズ推定の手法として頻繁に用いられている。ランダムアルゴリズムであり、変分ベイズ法(variational Bayes)やEMアルゴリズム(expectation-maximization algorithm)のような統計的推定法のための決定論的な方法の代替法である。
他のMCMC法と同様に、ギブスサンプリングはサンプルのマルコフ連鎖を生成する。得られるサンプル列がマルコフ連鎖であるため、例えば100番目毎にサンプルを選ぶといったサンプルが十分に独立とみなせるように気をつけるべきである。それに加え、サンプル列の始めの方の値は目的の分布を精確には表していないため、初期値を与えたすぐ後はburn-in期間としてサンプルを捨てるべきである。
導出
ギブスサンプリングはメトロポリス・ヘイスティングス法の1つである。同時分布より周辺化された条件付き確率分布から、与えられた確率分布に従ったサンプルをサンプリングする。同時確率
「ギブスサンプリング」の例文・使い方・用例・文例
- このソフトウエアはギブスサンプリングのアルゴリズムによりマルコフ連鎖モンテカルロ法の計算を行います。
- ギブスサンプリングのページへのリンク