タンパク質 タンパク質の定量法

タンパク質

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/09/30 08:51 UTC 版)

タンパク質の定量法

栄養学ではタンパク質全体の量を測定することが重要であり、また生化学で特定のタンパク質を分離精製した際にも、それがどの程度の量であるかを求める必要がある。これらのために一般的なタンパク質の定量分析法が多数開発されている。

精度の高い方法としては、燃焼後に窒素量を測定するデュマ法、硫酸分解後にアンモニア量を測定するケルダール法などがある。

またより簡便な方法としては、紫外可視近赤外分光法アミド結合ペプチド結合)の検出を用いたビウレット法、それにフェノール水酸基等の検出を組み合わせたローリー法色素との結合を観測するブラッドフォード法などがある。

特殊なタンパク質

イエローストーン国立公園では、熱水の中で生育する細菌が発見されている。このような高温環境で生きられる生物のタンパク質にはどのような特徴があるか、全貌は解明されておらず、外見上も他のタンパク質と差は認められない。分析の結果、熱に弱いアミノ酸(アスパラギン・システイン・メチオニンなど)の含有量が比較的少なく、逆にプロリンが多く含まれていることが判明した[23]

逆に低温で機能を失わないタンパク質は不凍タンパク質と呼ばれ、魚類から発見され1969年に単離に成功した。このタンパク質が低温で活動できるメカニズムは、氷晶核が形成されにくい構造を持つためと考えられる[23]

複合タンパク質

タンパク質には、アミノ酸配列のヌクレオチドだけで構成される単純タンパク質と、その外側にアミノ酸以外の装飾をもつ複合タンパク質がある。複合タンパク質が纏う装飾には、主に糖とリン酸がある[24]

タンパク質が付随させる糖は単糖からなる糖鎖であり、アミノ酸アスパラギンの残基に、N-アセチルグルコサミンマンノースが繋がったコア構造という土台の先に、分岐も含め多様な構造をつくる。ただし、このようにタンパク質に接続する単糖の種類は9種[25]しか見つかっていない。例えば赤血球の細胞膜をつくるタンパク質に繋がる糖鎖の種類が、ABO式血液型を決定づけている[24]。この糖鎖は、その種類ごとに異なるレクチンという他のタンパク質があり、この組み合わせで情報交換を行う役割を担っている[24]

アミノ酸のトレオニンやチロシンなどが持つ水酸基残基と結びつくリン酸は、アデノシン三リン酸(ATP)から供給され、リン酸を放出したATPはアデノシン二リン酸になる。リン酸化はタンパク質の働きを活性化したり、逆に抑制する働きを持つ。ひとつのタンパク質の活性化は次のタンパク質のリン酸化を促し、これが連続することで多岐にわたる情報伝達が行われる。この様子は「リン酸化カスケード」と呼ばれる[24]

タンパク質の生体内分解

生体内部のタンパク質は必要な時に作られ、使われ続けるうちに充分な機能を発揮できなくなる。分子シャペロンなどによる修復を受けるが、やがてタンパク質も寿命を迎える。その期間は種類によって異なり、数ヶ月のものから数十秒しか持たないものもあり、それぞれ生体内部で分解される[26]

その判断が下されるメカニズムは明らかになっていないが、タンパク質の寿命が近づくとリジン残基にユビキチンという非常に小さなタンパク質が付着する。1つだけでは特に変化は起こらないが、次々に結合して4個以上のユビキチン鎖状になると、タンパク質はプロテアソームと呼ばれる筒状構造体の中に導かれ、この中でペプチドにまで分解される。この一連の反応はユビキチン・プロテアソームシステムと呼ばれる[26]

もうひとつの主要なタンパク質分解機構としてオートファジーがあり、一度に多くのタンパク質が分解されるため、飢餓状態において重要度の低いタンパク質を分解してアミノ酸を補充する場合などに機能する。




  1. ^ a b c d 生化学辞典第2版、p.810 【タンパク質】
  2. ^ a b c d e 武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味
  3. ^ 『見てわかる!栄養の図解事典』
  4. ^ a b 武村(2011)、p.16-23、第一章 たんぱく質の性質、第一節 栄養素としてのたんぱく質
  5. ^ 武村(2011)、p.3-6、はじめに
  6. ^ a b 生化学辞典第2版、p.812 【タンパク質の一次構造】
  7. ^ a b c d e 武村(2011)、p.34-48、第一章 たんぱく質の性質、第三節 「焼く」とどうなる?たんぱく質
  8. ^ a b 生化学辞典第2版、p.816 【タンパク質の二次構造】
  9. ^ a b c d 武村(2011)、p.85-96、第二章 たんぱく質の作られ方、第四節 ポリペプチドはいかにして「たんぱく質」となるか
  10. ^ a b 生化学辞典第2版、p.812 【タンパク質の三次構造】
  11. ^ a b c 生化学辞典第2版、p.816 【タンパク質の四次構造】
  12. ^ (PDB) [1]
  13. ^ 東京大学の和田昭允教授の命名による
  14. ^ a b 武村(2011)、p.54-60、第二章 たんぱく質の作られ方、第一節 体をつくるあげるたんぱく質
  15. ^ 武村(2011)、p.98-113、第三章 たんぱく質のはたらき、第一節 たんぱく質はたんぱく質を分解する
  16. ^ a b c d e 武村(2011)、p.113-123、第三章 たんぱく質のはたらき、第二節 体のはたらきを維持するたんぱく質を
  17. ^ a b たんぱく質 (PDF) 」『日本人の食事摂取基準」(2010年版)
  18. ^ a b Report of a Joint WHO/FAO Expert Consultation Diet, Nutrition and the Prevention of Chronic Diseases, 2003
  19. ^ 『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』日本アミノ酸学会監訳、医歯薬出版、2009年05月。ISBN 978-4263705681 邦訳元 Protein and amino acid requirements in human nutrition, Report of a Joint WHO/FAO/UNU Expert Consultation, 2007
  20. ^ 低炭水化物ダイエットご用心…発症リスク高まる2012.07.08読売新聞。スウェーデンの30〜49歳の女性43396人[信頼性要検証]
  21. ^ joint FAO/WHO expert consultation. "Chapter 11 Calcium", Human Vitamin and Mineral Requirements, 2002.
  22. ^ ウォルター C. ウィレット 『太らない、病気にならない、おいしいダイエット-ハーバード大学公式ダイエットガイド』 光文社、2003年5月。174〜175頁。ISBN 978-4334973964。(原著 Eat, Drink, and Be Healthy, 2001)
  23. ^ a b 武村(2011)、p.123-133、第三章 たんぱく質のはたらき、第三節 たんぱく質のお湯加減―いろいろな温度で働くたんぱく質たち―
  24. ^ a b c d 武村(2011)、p.134-145、第三章 たんぱく質のはたらき、第四節 たんぱく質の装飾品と、その利用
  25. ^ ガラクトースN-アセチルグルコサミンN-アセチルガラクトサミンマンノース、L- フコースグルコースキシロースグルクロン酸シアル酸(武村(2011)、p.139)
  26. ^ a b 武村(2011)、p.145-153、第三章 たんぱく質のはたらき、第五節 たんぱく質の「死」


「タンパク質」の続きの解説一覧


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「タンパク質」の関連用語

タンパク質のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



タンパク質のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのタンパク質 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2018 Weblio RSS