蒸気機関車 蒸気機関車の分類

蒸気機関車

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/28 09:35 UTC 版)

蒸気機関車の分類

駆動方式による分類

ピストン
蒸気の圧力をシリンダーに導きピストンを作動させることで往復運動に変換し、その往復運動で動輪を駆動する方式で、広く普及した。
タービン
蒸気の圧力を蒸気タービンに導き、回転運動に直接変換する方式である。タービンで発生した回転運動はギアやロッドにより間接的に動輪に伝達される。 詳細は蒸気タービン機関車を参照。
発電
車上のボイラーで発生させた蒸気を、蒸気タービンや多気筒式蒸気エンジンに導き電力を発生させ、電気モーターにより駆動する方式である。アメリカなどに存在したが、試作段階にとどまった。一見するとディーゼル機関車のようで、とうてい蒸気機関車には見えないものが存在する。

動力伝達方式での分類

ロッド式
ピストンの往復運動をロッドで直接的に動輪に伝達する方式。シリンダーとメインロッドと動輪そのものがレシプロエンジンを構成するが、通常はレシプロという用語を用いない。ほとんどの蒸気機関車がこの方式を採用している。
歯車式
ピストンの往復運動を回転運動に変換し、その回転運動を歯車により間接的に動輪に伝達する方式、もしくはピストンの往復運動をクランクシャフトで回転運動に変え、シャフトとギアで動輪に伝達する方式。蒸気機関車の始祖とでもいうべきトレビシックの機関車は前者の方式だったが、当時の技術ではギアの高速回転ができず、本人自ら4号機の「Catch me who can」では歯車を排してしまっている。後者はギアードロコとしてそこそこ使われた方式で詳しくはギアードロコの項を参照。
チェーン式
ピストンの往復運動を回転運動に変換し、その回転運動をチェーン[要曖昧さ回避]により間接的に動輪に伝達する方式。自転車と似た原理である。ロッドを動輪に接続する必要がないため構造が簡便であるが、信頼性やチェーンの耐久性が低く普及しなかった。後述するバヴァリア号や、アメリカの森林鉄道でハンドメイドされた一部の車両がこの方式を採用している。
摩擦式
動輪を上下2段に付け、上段の動輪をシリンダーで駆動し、下段の無動力の車輪を摩擦により間接的に駆動する方式。歯車比の理論を当てはめて考案されたもので、速度を上げる場合は上段を大きく、下段を小さくし、牽引力を上げる場合には上段を小さく、下段を大きくするという物であるが、実際には成果を上げず摩擦機構の問題も多かったため実用化しなかった。主な形式は1876年ドイツのエルザス=ロートリンゲン鉄道向けに製造されたものであり、D7形451号「ファゾルト」という形式を与えられ1906年まで在籍していた。上段と下段の車輪径の比率は1:3で、牽引力を重視したため最高速度はわずか時速10kmだった。のちに似た方式をアメリカのホールマンとユージーン・フォンテインがそれぞれ考案している。
独立駆動式
V字型の蒸気エンジン1基を1つの動輪に直結させ、直接動輪を回転させる方式。各動輪間は連結されておらず、ロッド式のような重い可動部を持たない。静粛性や高速走行に優れる反面、引き出し時などに空転が起こりやすい欠点があった。ヘンシェルが製造したドイツ国鉄19.10形蒸気機関車が代表例であるが、実用化された時期が遅く、ディーゼル機関車の台頭期と重なったこともあって量産されず、短期間の運行のみに終わった。

エネルギー源による分類

化学燃料(有機燃料)
石炭コークス重油などの化石燃料、その他薪やガスなどの炭素資源を燃焼させることにより熱エネルギーを発生させ、これによりボイラー内の水を沸騰させて蒸気を得る方式である。蒸気機関車のほとんどがこの方式で、燃料には主に石炭、コークスが用いられる。旧国鉄の制式機では蒸気機関車時代の後期に補助重油タンクを装備し、勾配区間などパワーが必要な際に重油を投入したほか、C59形の127号機が重油のみを燃料とする重油専燃機に改造されたことで知られている。日本国外ではドイツ連邦鉄道がこの方式に積極的であったことが知られ、世界的には重油専燃機がある程度普及した。タイなどの東南アジア各国では薪が多く使われた。変わった例としては、東南アジアの製糖工場で、砂糖の原料となるサトウキビの絞りかす(バガス)を機関車の燃料として用いた例が多くある。
圧力の外部供給
ボイラーを有さず、外部から熱水とともに高圧蒸気を供給し、それをタンク内に蓄圧してピストンを駆動する方式を無火機関車(ファイアレス)と呼ぶ。一般的に蓄圧に2 - 3時間以上を要するにもかかわらず、その走行可能距離は著しく短いが、火を使わず煤煙なども一切出さないため、火気厳禁の産業施設などで使用された。また、高圧蒸気と熱水の代わりに圧搾空気を用いた圧搾空気機関車や、走行可能な距離が短いという欠点を改善するために、アンモニア苛性ソーダなどの化学薬品を使用する車両も製作された。日本では無火機関車が1963年まで八幡製鐵構内で数多く使われていたほか、浜川崎駅から分岐するシェル石油(現在の昭和シェル石油)の精油所引き込み線で1960年代まで使用されていたことが知られている。生まれながらの無火機関車ではないが、群馬県の「ホテルSL」(元・SLホテル)や栃木県の「SLキューロク館」、鳥取県の若桜駅では静態保存されていた蒸気機関車の動力部などを整備し、圧搾空気を使って短い距離を走行させるというユニークな試みを行っている。日本国外でも観光用としての活動が伝えられており(ドイツマンハイムの産業博物館など)、そのほか現在も南米などで商業用として稼動している可能性がある。
電力
架線から運転台天井部に取り付けたパンタグラフで集電し、その電気エネルギーでボイラー内の水を沸騰させて蒸気を得るという機関車がスイスに存在した。これはSBB(スイス国鉄)E3/3形と呼ばれる軸配置0-6-0の入れ替え用タンク機関車であり、第二次世界大戦中の石炭の入手難に対応すべく2両が試作されたものである。この形式の場合、電気を動力源(熱源)としているが、電動機電磁石など、電気のみによって駆動力を得ているわけではなく、電力はあくまで熱源としてボイラーの加熱にのみ用いられ、最終的には蒸気で動輪を駆動するため、電気機関車ではなく蒸気機関車に分類される。
原子力
搭載した原子炉で蒸気を発生させ、蒸気タービンで発電しモーターを駆動する方式で、発電式機関車の一種である。主に1950年代1970年代に計画されたが、重量が極端に大きくなる、放射能漏れの危険性があるなどの問題により、実現した例はなかった。
アメリカ
GE製のガスタービン機関車を改造する予定であった。
ソ連
TE-3型ディーゼル機関車を改造する予定であり、1970年代には超広軌の巨大な機関車が計画された。
西ドイツ
V200形ディーゼル機関車を2両連結に改造する予定であった。
日本
昭和30年代に鉄道技術研究所により、AH101という形式が計画された(形式のAはAtomicの略であると思われる)。
ハイブリッド
蒸気機関とディーゼル機関を両方搭載した、ハイブリッド方式の機関車が試作された。1926年にイギリスのキトソン社がスティル社のディーゼルエンジンを使用してロンドン・アンド・ノース・イースタン鉄道向けに試作機が製造され、1934年まで試験が行われたが、ボイラーなどに問題が多く実用化しなかった。ソビエトでは戦前から戦後にかけていくつかの試作機が製造されたがどれも成功せずに終わっている。

ボイラーによる分類

煙管式
円筒形の水缶に、缶を貫通する多数の細管による伝熱部を設け、火室で発生した燃焼ガスをこの細管に誘導する。燃焼ガスの熱エネルギーによって水缶内に湛えられた水を沸騰させることで、高温高圧の蒸気を得る。そのバレル部分の構造の複雑さなどから高圧化が難しく、また清掃にも手間がかかる。鉄道車両では一般に10気圧から20気圧程度の範囲のボイラー圧力で使用される。以下の二種に大別される。
飽和式
ボイラーで発生させた蒸気(飽和蒸気)を直接シリンダーへ導く方式。蒸気の膨張により温度が下がると水滴が凝結した。蒸気の持つエネルギーが少なく、効率もよくない。
過熱式
ボイラーで発生させた蒸気を、過熱管寄せを介して細いパイプ(過熱管)で煙管内に導き再度加熱してできた過熱蒸気を使用する方式。飽和式に比べ効率がよく、蒸気機関車の出力向上や水・石炭の消費量の節約に大きく貢献した。理論上での提案はされていたが、高温の蒸気を使用するため、シリンダー潤滑油が改良されるまで実用化できなかった。
水管式
火室に伝熱管を設け、火室で発生した熱エネルギーを直接この管に伝え、その中に通された水を沸騰させることで高温高圧の蒸気を得る。煙管式と比較して熱効率や始動性に優れ、高圧化が容易という特徴があり、鉄道車両では100気圧程度のボイラー圧力を実現したものも存在した。ただし煙管式と比較して保持する水量が少なく応答が鋭敏な分、適切な出力を安定的に得るには燃料や水の供給、燃焼の制御を高精度に行う必要があり、また振動に弱く高圧がかかる水管や補機の保守が難しいという問題を抱えている。このため、大きな振動が発生するレシプロ式の駆動系を備える蒸気機関車では、一般に普及することはなかった[注釈 23]
フランコ・クロスティ式
給水加熱器を、使用済蒸気と共にボイラーからの燃焼ガスも利用するよう強化し、給水の温度を高めることで、熱効率の向上を図ったもの。

火室による分類

狭火室
火室の幅が線路の幅より狭く動輪間の台枠内にそのまま収めたもの。台枠設計をシンプルにできるというメリットがある他、動輪の間に置かれるので安定性もよい。車輪のバックゲージの問題から台枠の幅が狭くなる狭軌で、しかも使用炭の品質も世界的な水準から見て良好とは言いがたかった日本では、大型機関車にこの方式を採用すると十分な火格子面積=火力が確保できず、高出力化の障害となった。それに対し、標準軌間を採用し、高発熱量かつ灰分の少ない良質炭の入手が容易であったイギリス、特に傑出した品質で知られたカーディフ炭を産出するウェールズ地方が沿線にあったグレート・ウェスタン鉄道などでは、狭火室でも他鉄道における広火室に匹敵するかこれを凌駕する性能が得られたことから、この方式を蒸気機関車時代の最後まで採用しているほか、フランスでは火床前方に急に傾斜させて石炭が奥の方まで崩れ落ちるようにして、狭火室だが前後の長さを取ることで火格子面積を確保した240形(フランス国鉄240P型蒸気機関車)の例がある[41]
広火室
火室の幅を線路の幅より広くした、近代の大型機では一般的な方式である。広い火格子面積を確保できるため、特に低品質炭を常用せざるを得ない各国・各鉄道で蒸気機関車の出力向上に大きく貢献した。なお、そのまま火室の幅を広げると動輪が邪魔になるので、通常は以下の4つの手法を取られる。
  • 後方2つの動輪の間をあけて火室を落とし込む方式。
  • 動輪の上に火室をそのまま上乗せで配置する方式。
  • 動輪の後ろで台枠を拡幅してこれを支える従台車を置き、そこに火室を配置する方式。
  • 火室を動輪の後ろに突き出すが支えないでオーバーハング状態にする方式。
日本では5830形が1番目、8850形が2番目、8900形が3番目にそれぞれ該当するが、1番目は「動輪のホイールベースが伸びて曲線通過の悪影響やサイドロッドの重量がかさむ」、2番目は「重心が上がり、特に大動輪の機関車では安定性が悪くなる。」、3番目は「全長が長くなる。また、列車牽き出し時の後方への重心移動により、本来は動輪にかかるべき荷重が従輪にかかるようになるため、特に列車出発時に空転が生じやすくなる。」といった一長一短な要素を持っている。なお4番目のオーバーハングさせる方式は速度を上げるとピッチングが激しくなる[42]ため、日本では採用されてない[注釈 24]
燃焼室の設置
本来は19世紀の米国で石炭から出るガスと空気をよく混ぜて燃やそう[注釈 25]という発想で設けられた仕組みなのでこの名前だが、当時の小さく短いボイラーでは伝熱面積の減少による悪影響の方が大きく、火の粉が逆に出やすくなって一度は廃れ、20世紀になってボイラー大型化に伴う通風の悪化の改善のため復活したものである[43]
蒸気機関車の燃料として最も望ましい瀝青炭の燃焼時の炎は長く、火室内では収まりきらないので、火室前方に副室を設けこれを燃焼室と呼んだ。燃焼室を設けることにより高温の炎からの輻射熱を十分に吸収でき、効率が向上した。また、燃焼時間が長くなったことにより煤煙の発生が減少し、煙管の詰まりも防がれた。外見から燃焼室の有無を知るには火室の前方にも洗口栓があるかどうかを調べればよい。日本の国鉄では8200形製造時に導入のチャンスがあり、またメーカー側も推奨していたが、通常の火室ですら修繕に悩まされている現状で複雑な腐食箇所が多い火室となるのが欠点とされた。[44]このため、鉄道省の中にも島秀雄のように効果を評価[45]する者がいたにもかかわらず、戦時設計で極限性能発揮が求められたD52形まで採用されなかった。だが、戦時設計の粗雑な製造という悪条件も重なり、燃焼室で破裂事故(D52 73 昭和19年 5月 14日山陽線大久保-土山間において破裂、D52 83 昭和19年 6月 30日 山陽線万富駅にて破裂、D52 209 昭和20年 10月 19日 東海道線醒ケ井駅にて破裂)を起こし[46]、D52に対する悪評の一因ともなった。余談だが同じ戦時型でもS118S160などは燃焼室を装備せず極限性能ではなく製造を優先した設計思想も存在する[47]
欧州では1930年代半ばに燃焼室の効果に疑問を呈されたことがあり[注釈 26]1937年パリ万国博覧会で最高の賞を授与したポーランドPm36には燃焼室が付いておらず、英国LMSコロネーション級蒸気機関車から燃焼室を取り4-6-4とした四気筒機関車の計画が進められていたが世界情勢の悪化により立ち消えとなっている[48]。フランスではSNCFが誕生した際に標準型機関車としてアンドレ・シャプロンが設計に携わったSNCF 141Pに燃焼室が付けられなかった[49]。ソビエト連邦で燃焼室はFD機関車に搭載されたが波及したとは言いがたく、スターリン章を授与されたL型機関車と最後の量産機であるP36型に設置されずなかった。そのため、ソ連技術の影響を受けた中国国鉄前進型蒸気機関車で燃焼室が搭載されたのは1964年の改良型からであった[50]
特殊な火室
ベルペヤ火室英語版
ベルギーの鉄道技術者、アルフレッド・ベルペヤ英語版が考案した火室形状で、内火室と外火室の形状を相似形にしているため、内火室を支えるステイの形状を単純にでき、缶水の循環が良く水垢の付着が少ないという利点を持つ。上部が角張った形状が特徴であるが、円筒形の煙管部との接合工作が難しいという欠点がある。
台形火室
上から見ると火床が台形(前部は狭く動輪の間に収まるが、後部は広火室。)。重い火室を少しでも前に持っていくことで走行を安定させ重量牽引時の軸重移動を抑える。フランスで使用されていた[51]
ウーテン火室
広火室の一種で、外見上は下部が大きく広がっているのが特徴である。泥炭など質の悪い石炭を燃焼させるためにアメリカで考案されたもので、日本では日本鉄道が質の悪い常磐炭を使用するために、一部の形式で採用した。

弁装置による分類

日本の国有鉄道に在籍した蒸気機関車の弁装置の種類は次の通りであった。

  • スチーブンソン式(基本形、ハウ形、アメリカ形):初期の蒸気機関車の標準型として広く用いられた。弁室は、基本形ではシリンダの内側に置かれるが、アメリカ形では上部に置かれる。
  • アラン式(トリック式)
  • ジョイ式(基本形、ウェッブ形)
  • ベーカー式(深川形)
  • 宇佐美式 : C57形で試用。自動可変リード弁の一種。
  • マーシャル式(ヴィンターツール形、コッペル形)
  • グレズリー式:3シリンダ式機関車の中央シリンダ用に使用される方式で、左右の弁装置の動きをてこで合成することで、中央シリンダの弁装置を作動させる。
  • ワルシャート式(ヘルムホルツ形、ホイジンガー形):近代の大型蒸気機関車のほとんどがこの方式で、動作機構が全て動輪の外側にあるため、整備性が良い。

気筒数による分類

1気筒(単気筒)
蒸気機関車の黎明期に存在した。また、1857年、ニールソンが1気筒の小型機を製造し、多くがスコットランドの炭鉱や製鉄所で使用された。
2気筒
ごく一般的な方式である。2組の気筒(シリンダ)があるため、より円滑な動作が可能である。ロッドが死点に位置して、起動不能となるのを防ぐため、左右の位相は90°ずらされている。日本の国有鉄道においては右側先行が原則であったが、9600形など左側先行の例外も少数ながら存在した。
ギアードロコではV形配置のものも見られる。
3気筒・4気筒
国鉄ではC52形C53形が3気筒である。頻繁な点検や注油などを要する複雑な弁装置を車輪間に設置するのを回避する目的で、左右の弁装置の作用を合成、あるいはロッカーアームなどで位相変換して車輪間のシリンダーへの蒸気圧供給を制御させる、特別な弁装置を搭載するケースが多い。そのため動軸を複雑かつ工作精度の維持の難しいクランク軸とする必要があるなど、概して2気筒機関車に比べ構造が複雑で整備性が悪く、特に車輪の間のシリンダーに手を入れにくい(原則、線路間にピットを設けてこの中に人が入って下から修理する[注釈 27])ため長距離を走るアメリカでは外部から点検困難なことから嫌われ、1920年代に機関車の大型化で一時アルコ社が前方から整備ができるグレズリー連動弁装置を使った3気筒を製造したこともあったが、すぐにライマ社の2気筒シンプルで大型の火室を使う方式が主流になり廃れている[52]。日本の3気筒もアメリカを手本にしていたのだが本国以上に定着せず、満鉄向けのミカニと日本国内向けのC52を20年代半ばにアルコ社から輸入後、ミカニ(増備分)とC53を30年代初頭まで製造していたが、その後は3気筒後継形式は生まれないまま終わっている[53][注釈 28]
その一方で、これらの方式はメインロッドを3本あるいは4本とすることで各シリンダーの位相をそれぞれ120°あるいは90°ずつずらし、ハンマー・ブロー現象を抑えることができ、またシリンダーの排気も1/3ないしは1/4周期で順番に行われるため、ボイラー煙管内の強制通風が均等かつ円滑に行われて燃焼効率が改善される、といった利点がある[注釈 29]。もっとも日本のC53形はこの機構に対する十分な理解のないままに設計が行われた結果、発車時のロッドの位置によっては発車不能になることがあり、問題視された。
これに対し、標準軌間を採用する各国、特にフランス・イギリスの2か国では、燃費の改善や強力化の手段[注釈 30]として3・4気筒機が積極的に導入されている。
ドイツは帝国統一以前はバイエルンなどの南部で複式3~4気筒式も使用されていたが、統一後は過熱器の発明もあって単式2気筒の方が整備性に良いと一時はこれのみを製造していた時期もあったが、時速160kmを超えるような高速になると振動が大きくなる(アメリカはこれをレシプロマスの軽量化とハンマーブローに耐える頑丈な軌条を設けることで防いでいた。)ので単式のまま3気筒の1930年代後半に製造しているが、二次大戦と重なったためそれほど多くは製造されてない(0110型が55両、0310型が60両。)[54]
3気筒と4気筒それぞれのメリットとデメリットは、4気筒は外側シリンダーと対にできるので小型のレバーを使って外側のバルブで内側を駆動でき[注釈 31]バルブギアを2気筒と同じ2つで済ませられるが、機関車の出力が上がるとクランク車軸がゆがみやすくなる(車軸にクランクが2つあり強度が落ちる)というものがあり、大馬力高速運転には3気筒の方がクランクウェブの厚みが取れ(フランスのシャプロンの計算では4気筒が1000馬力×4付近が上限、3気筒は2000馬力×3ぐらいまで可能性があるした。)、トルク変動も2・4気筒が1回転に4回なのに対し3気筒は6回に分散するためトルクのむらが少なく有利という違いがある[55]
変則的なパターンにアメリカのボークレーン社が複式による燃費向上と内側シリンダーによる整備性悪化を防ぐことを両立するため、シリンダーを全部外側につけた4気筒式(通常のシリンダーの位置に上下に高圧と低圧シリンダーを並べる構造)が存在したが、こちらは動きが2気筒と同じなので振動減衰に役立たない[注釈 32]どころか、シリンダーやロッドの数が増えた分駆動系の重量が増加して逆に振動を増加させており、燃費向上のメリットを差し引いてもうまみが薄くボークレーン社も過熱器が導入され始めると製造を打ち切っている[56]
気筒数がさらに多い機関車では、フランスで低速走行時の経済性を改良するために1940年に作られた160.A.1.型の「6気筒」というものがある(第一動輪と先輪の間に低圧シリンダーが横並びに4つ、高圧シリンダーが第3・第4動輪の内側に2つ)が、1両のみの試作に終わっている[57]
3気筒と4気筒の大きな問題に運転が煩雑になること、内側のシリンダーに過負荷がかかることや過熱による部品の熔解や潤滑システムの故障が発生しやすい欠陥があった。特にグレズリー式でこの問題が顕著に現れていた[58]。設計に技術的な欠陥があるため故障ばかりで[59]、2気筒に比べて製造コストが高いだけでなくメンテナンス不足に陥りやすいためLNERに無駄なコストがかかったと考えられている[60]。その反省を受けたアーサー・ペパコーン(Arthur Peppercorn)の設計でも依然として問題は残り[61]、結局21世紀の技術で設計製造されたA1 60163トルネードすらこれらの欠陥を解決する至っていない。[62]イギリスの交通を研究する歴史協会は実用機関車としては通常の2気筒のほうがはるかに優れていたと結論を出している。[63]
燃料事情から複式4気筒機を積極的に導入していたフランスも複式4気筒機は運転が難しいため制約が余りにも多いことが問題となった。1日の平均走行距離は1945年に約75km[64]と終戦直後の日本の鉄道省が走らせていた約150kmの半分しか動いていなかった[65]。戦前から非効率な状況を改善しようとする大規模な試験も行われたが、陳腐で新しい体制に適応できない設計によって造られた機関車のため概して失敗に終わっている[66]。戦後に1918年より製造が開始されたライトミカド型を基にした2気筒機の141R形を導入するとこれまでのフランス機が持ちえなかった人間工学を備え運転や整備がしやすい卓越した機関車と評された。[67]凡庸な人員でも交代で運行が可能になったことでSNCFに3気筒・4気筒では不可能であった革新をもたらし[68][69]、歴史的遺産として最多の4両が保存されている
ギアードロコでは、ボイラー脇にシリンダーを垂直にむき出しに並べた、インライン(直列)配置が一般的で、整備性の問題がないことからこのタイプの3気筒は特例的にアメリカでも使用され続けた。

使用済み蒸気による分類

単式
ボイラーで発生させた蒸気を一度だけ使用するのが単式で、ごく一般的な方式である。
複式(2段膨張式)
単式に対して、一度使用した蒸気を、もう一度別のシリンダに送り込んで再使用するのが複式である。一度使用した蒸気は圧力が下がるので、1次側(高圧)のシリンダより2次側(低圧)のシリンダの方が径が大きくなる。スイス人のアナトール・マレー1874年に特許を取得し、1876年に実用化に成功した。
複式には種々の方式があり、左右のシリンダをそれぞれ高圧・低圧とした2シリンダ式、フレーム外部と内部に高圧と低圧のシリンダー(どちらがどちらになるかは車両による)3・4シリンダ式、左右のシリンダそれぞれに高圧・低圧のシリンダを装備した4シリンダ式、高圧・低圧の2組の走り装置を有するマレー式(後述)などがある。日本においては、山陽鉄道が4シリンダ複式(ボークレイン複式)を積極的に導入したほか、明治時代末期に国有鉄道がマレー式を一時大量輸入した程度で、他にはほとんど普及しなかったが、1893年に官設鉄道神戸工場で製作された国産第1号機関車(860形)が2シリンダ複式(ワースデル複式)であったのは特筆される。
復水式
シリンダーで使用した蒸気を回収し、コンデンサー(凝縮器)で水に戻して再利用する方式。水の便の悪い地域で用いられる。

車軸配置による分類

ホワイト式車輪配置において、19世紀アメリカの典型的な車軸配置である4-4-0の「ガブ・スタンフォード」

蒸気機関車にとって、動輪と従輪の配置は非常に重要な要素である。これによって、機関車の用途が決まってしまうといっても過言ではない。動輪径を大きくすれば同一回転速度で運転速度を高くできるが、機関車全体が一定の長さに収まるようにするには、動軸数を減らすことになり、牽引力が低下する。そのため、高速が要求される旅客列車牽引向けということになる。逆に動輪数を増やせば牽引力は増すが、その分動輪径は小さくせざるを得なくなり、速度性能が犠牲になることになるため、貨物列車牽引や急勾配区間向けということになる。

従輪については、機関車重量の一部を負担するばかりでなく、先従輪には曲線通過時に、動輪をスムーズに導く機能があり、高速を要求される旅客用機関車では、2軸としたボギー台車が装備されることが多い。一方で、貨物用機関車では動輪上重量を増して粘着力を高めるため従輪の数は少なく、高速も要求されないため、より簡便な構造の1軸先台車が採用されることが多い。

車体構成による分類

タンク式(タンク機関車)
石炭および水を機関車本体に搭載する方式、主に小型機が多いが、4100形、4110形E10形など急勾配線専用の大型機にも採用例がある。小回りが利くなど長所があるが、長距離運転ができないなどの短所がある。
テンダー式(テンダー機関車)
石炭や水をテンダー(炭水車)に積載し、機関車本体に牽引させる方式。通常、機関車本体と炭水車を分離して運用することはないが、検査時は切り離しが可能である。長距離運転ができるなど、長所があるが、一部の種類を除いてバック運転や、小回りが利かないなどの短所がある。
キャブ・フォワード型
テンダー式機関車のうち、機関車本体の前後を逆にしたもの。キャブ(運転室)を最前部に設けることにより機関士は煙害から免れることができ、また良好な前方視界を得た。ドイツや、アメリカのカリフォルニア州の山岳地帯のトンネルが多い線区で使用された。
キャメルバック型(キャブ・ミドルワード型)
テンダー式機関車のうち、機関車の中央に運転台が位置しているもの。詳細はキャメルバック式蒸気機関車の項を参照。

関節式機関車

1両の機関車にボイラーに固定されず独立した台枠を有する1組以上の走り装置を装備し、出力強化や曲線通過の容易化を図ったもの。

マレー式
ボイラーの下に2組の走り装置を設けた方式。後部動力台車はボイラーに固定されていて、高圧蒸気の供給を受けてシリンダーを駆動し、その排気を左右に首を振れる前部動力台車に送って径の大きな低圧シリンダーを再度駆動する複式機関車である。
なお、製作者のアナトール・マレーの関節式にした意図は、これ以前に作った複式機関車で起きた出力の違うシリンダーで別々の車輪を駆動することによって起きた高速での不安定化を防止するためであり、出力強化や曲線通過の容易化は副次的なものであった[70]
単式膨張型関節式(単式マレー式)
日本にはない形式で、アメリカのsimple expansion articulated engine の訳語。前述のマレー式では前部が低圧シリンダーのため関節部に蒸気を送るのが容易な反面、シリンダーが大型になりすぎ車両限界に接触したり重量過大を招いたため、前部・後部のシリンダーが同径で、同じ圧力の高圧蒸気がボイラーから直接同時に供給される単式機関車として考案された[71]
ガーラット式
2組の走り装置を別々の台枠に設け、その両車の間に跨ってボイラーを搭載した主台枠が首振り構造で載る方式。
(ダブル)フェアリー式
2つのボイラーを背中合わせに繋ぎ、その下に2組の独立した走り装置を設けた方式。
マレー式と同じくボイラーの下に2組の走り装置を装備するが、2組の走り装置はどちらもボイラーに固定されておらず、完全に独立した首振り構造であり、シリンダーが中央に寄っている点でもマレー式と異なる。
シングルフェアリー式
車体前部にボイラーから独立した1組の走り装置を備え、運転台下部には無動力のボギー台車を備える。
メイヤー式
2組の独立した走り装置を備える。シリンダーは前後とも中央側にある。
マッファイ式
ドイツのJ.A.マッファイ社により、1851年のゼメリング・コンテストのために考案された方式。
ヴィーナー・ノイシュタット式
ドイツのヴィーナー・ノイシュタット社により、1851年のゼメリング・コンテストのために考案された方式。
コッケリル式
ベルギーのコッケリル社により、1851年のゼメリング・コンテストのために考案された方式。
デュ・ブスケ式(英語版)
フランスの鉄道技術者ガストン・デュ・ブスケ(フランス語版)により開発された方式。
ゴルウェ式(Golwé locomotive)
ベルギーで製作されフランスの西アフリカ植民地で使われた方式。

双合式

(ツヴィリングスロクス、Zwillingsloks)
2両の通常型タンク式蒸気機関車を背中合わせに連結した形式。転車台の設置が困難で、軸重制限が厳しく、かつ一定の牽引力が要求される野戦軽便鉄道用としてドイツで考案された。ドイツ陸軍の影響下にあった日本陸軍も導入し、鉄道連隊にはA/B形と呼ばれる双合式機関車が400両あまり在籍していた。

歯車式蒸気機関車

シェイ式蒸気機関車
船舶用のエンジンを右側面に設置した歯車式蒸気機関車
クライマックス式蒸気機関車
側面に斜めに傾斜したシリンダーから中央の伝達軸を駆動する。
ハイスラー式蒸気機関車
V型に配置された蒸気機関で前後の車輪を駆動する
ウィラメット式蒸気機関車
シェイと類似の形態だが重油を燃料として使用し、過熱蒸気式、弁装置はワルシャート式弁装置

注釈

  1. ^ なお中国語では汽車は「自動車」を意味する。日本語で言う「汽車」は「火車」と表記する。
  2. ^ ただし、地域や世代によっては、電気で動く物も含めて全ての列車のことを「汽車」と呼んだり、国鉄JRを「汽車」、路面電車私鉄を「電車」と呼んで区別したりする場合がある(このような「汽車」の用法については「汽車」を参照のこと)。
  3. ^ 旧字体汽罐車
  4. ^ たとえばen:Derby Canal Railwayなどは1792年から使われていた
  5. ^ en:Killingworth locomotivesも参照可
  6. ^ a b ポニー台車とは先輪(原文は「前従輪」)が1軸の場合(2軸以上の場合は「ボギー台車」)に使用され、釣合梁(equalizer)を介して先輪と第1動輪それぞれの板ばねで支えられるもの、製作者の名前をとって「ビッセル台車」とも呼ばれる(日本の鉄道省は「心向台車」と呼称)[1]
  7. ^ D51形に先立ち1925年にアメリカから輸入された単式3シリンダー機の8200形(C52形)では手焚きのままで火格子面積を3.8m2としたが、これは当時の日本人の一般的な体格・体力では投炭を担当する機関助士に過大な負担を強いたため、のちの改造で火格子面積を縮小している。
  8. ^ キャブの大きさの都合で機関車では船のように二人同時に投炭をやった国はなく、二人機関助手がいる場合は投炭を交代して休んでいる方がタブレットの受け渡しなどをやる。(齋藤2007) p.256
  9. ^ 例として満鉄のデカイ型では元になったミカイ型と同じ牽引力で軌道の弱い区域を走行させるため、ミカイの従輪部分にも動輪をつけて5軸にして動輪上軸重を分散させて対処した際、本来小さな従輪で支えていた広火室を動輪のうえにのせた影響で火床面積はさほど変わらないのに火室がかなり浅くなり、不完全燃焼が起きやすくなったとされる。
    『満洲鉄道発達史』高木宏之 著、株式会社潮書房光人社、2012年、ISBN 978-4-7698-1524-2、P113。
  10. ^ 1925年にロンドン・アンド・ノース・イースタン鉄道 (LNER) との間で同社最新のA1形(軸配置2C1、過熱式単式3気筒、広火室。火格子面積3.83m2)とを交換し、互いの鉄道線において同条件下で実施された比較試験では、キャッスル型の方がコンパクトでボイラーの火格子面積もA1形の約70パーセント強しかなかったにもかかわらず、使用炭の品質が本来想定されるより低下するLNER社線上においてさえ、出力・燃費の双方で勝利を収めている。これは弁装置設計などでGWR側に一日の長があったことによる部分が大きいが、この例が示すように狭火室と広火室の違いは必ずしも性能に決定的な差をもたらすとは限らない。
  11. ^ 例えば、ドイツでは良質な石炭の入手が容易であったプロイセンをはじめとする北部の各邦国が保有する鉄道は狭火室を常用し、良質炭の入手が難しかった南部のバーデン大公国バイエルン王国などが保有した各鉄道は広火室を早い時期から導入していた。また、アメリカで広火室積極導入の端緒の一つとなったウーテン式火室を備えるキャメルバック式蒸気機関車は廉価だが着火しにくい無煙炭を燃料とすることを前提に研究開発されており、通常の石炭以外の異種燃料を燃やす手段として通常より大きめの火室を備えた機関車を製作するケースはアメリカ製機関車を中心に各国で見られた。
  12. ^ ただし、日本でも陸軍の鉄道大隊・鉄道連隊向けに1901年より製作が開始された双合機関車では軸配置Cの8t級機関車を背中合わせに組み合わせた小型機関車であったが、既に15.5kg/cm2を標準採用していた。
  13. ^ レギュレータとも呼ばれている。
  14. ^ スピード記録などのための無理をして出した記録としては毎分500回転近くまで出したものもあり、イギリスではロンドン&ミッドランド鉄道ダッチェスクラス(4シリンダー)の480回転(1937年、(齋藤2018) p.55)、ロンドン&ノースイースタン鉄道A4クラス(3シリンダー)の530回転(1938年、(齋藤2018) p.61。ただし中央クランクが損傷した)、アメリカのノーフォーク&ウェスタン鉄道のJ型(2シリンダー)の540回転((齋藤2018) p.81)などがある。
    フランスは最高時速120km制限の関係でここまで極端なのはなくパリ・オルレアン鉄道240.700形(4シリンダー)の430回転((齋藤2018) p.52。なおこれは試験時の特例で151km/hの速度限界超過の値。)、ドイツは高速回転化が進まず0110型の375回転程度((齋藤2018) p.71)でそれを習った日本も回転数増加の流れには至ってない。なお回転数増加は走行装置の摩耗損傷の増加も招く上に(H.C.B. Rogers, Riddles and the 9Fs (Ian Allan, 1982))、内側にシリンダーがある場合は過熱による不具合まで起こしてしまう。リビオ・ダンテ・ポルタと21世紀の技術で作られたA1 60163トルネードも過熱による呪縛から逃れられていない。
  15. ^ 黎明期の機関車ではこれを危惧して通常の車輪は車体を支えるのみで動輪をギア状にしたブレキンソップや、足をつけて馬のように動かして走らせようとしたブラントン(どちらもイギリス人)といった例がある。(萩原1977) p.178-179
  16. ^ 第二次世界大戦中、南方戦線で日本軍が蒸気機関車を運用していた際に、鉄道車両に関する知識のない自動車技師出身の整備兵が内燃機関と同じ精度で蒸気機関車の各部品の整備・組み立てを行ったところ全く動作せず、精度を落として(各可動部に意図的に遊びを設けて)再組み立てしてようやく動作した、という逸話が残っている。
  17. ^ a b 電車・電気機関車は制御器の接点の調整に熟練を要し、調整が悪いとノッチ進段時の衝動が大きくなったり、高速度遮断器が作動して運転不可能になる事例もあった。また気動車・ディーゼル機関車はディーゼルエンジンそのものが蒸気機関に比べてはるかに複雑で部品点数が多く整備には熟練と専門知識を要した。これらが劇的に解消されるのは、電気車ではVVVFインバータ制御が一般化し、内燃機関車では部品の精度が向上したことと電子制御により大型高速ディーゼル機関のメンテナンスフリー化が進んでからである。
  18. ^ 極端な例だが、ソ連のAA20形は直径1600mmの動輪が7軸もあり、非常にホイールベースが長かった結果、時速70kmで振動が激しくなったのでこれが最高速度とされた。(齋藤2018) p.75
  19. ^ なお、この振動は前後と上下の2つの方向があるのでウェイトをつけてもどちらか片方しか修正できず(ハンマーブロー参照)、多気筒にすることである程度抑えられる。(齋藤2018) 「第4章 回転数アップ」P.48-65。)
    もっとも電気機関車や電気式ディーゼル機関車の場合もモーター重量を直接動輪軸にかける形式(吊りかけ式など)でモーターが重い時代の頃は(ばね下重量が蒸気機関車以上に重いので)結局高速走行時には堅固な軌道が求められた(ウェストウッド2010) p.192
    (注:ウェストウッド著『世界の鉄道の歴史図鑑』の原文では「ディーゼル機関車」の項でこの説明があるが、電気式の足回りは電気機関車と同じな上、直後に「スイスの電気機関車で車体側でモーターを支えてこの問題を解決した話」があるので電気機関車も含んでの話と判断した。)
  20. ^ 低速で動く出発時や加速時にこそ大出力が欲しいのに、その時蒸気機関車は全力の半分ほどしか出せない。参考までにいうとアメリカのユニオンパシフィック鉄道4000型(ビッグボーイ)は時速70マイル(112km)時に1万馬力の出力を出せたが、時速35マイル(56km)では6200馬力、時速20マイルでは5200馬力しか出せなかった。(ロス2007) p.193
  21. ^ 王立バイエルン邦有鉄道PtL2/2型蒸気機関車は石炭焚きでの数少ない1人乗務形の形式である。
  22. ^ ディーゼル機関車も燃料消費で軽くはなるが、水を大量に消費する蒸気機関車ほどは大きく変動はしない。
  23. ^ 振動の問題の少ない船舶では軍艦を中心に1910年代以降急速に普及した。そのため、船舶用として安定した性能を発揮していた機種を機関車用として転用することが再三に渡って試みられた。日本でも、帝国海軍の艦船用艦本式ボイラーの原型となった宮原式水管缶を機関車に搭載する事例が、1910年代中盤にいくつか存在した。しかし、レシプロ駆動系を備える鉄道車両用動力源としての水管式ボイラーは、コンパクト化が強く求められ、また軽負荷でもあった蒸気動車用を除くと、この宮原式の事例を含むほぼ全てが量産・実用段階に到達せずに終わっている。
  24. ^ 外国では入替機関車(英語: USRA 0-6-0など)などに使われたことがある。
  25. ^ この時代は火室のレンガアーチもまだなく、炎はそのまま煙管に向かって伸びていた。
  26. ^ [1]リンク先も参照。ナイジェル・グレズリーはこれに反論しているが、持論ではなくフランスの友人がこうしているからと語っただけであった。
  27. ^ インドネシア国鉄C53(4気筒)のように先輪と動輪の間を離して、ピットがなくてもこの間に入って内側シリンダーを整備できるようにしたものもある。(齋藤2018) p.81-83
  28. ^ なお、このグレズリー連動弁装置は左右のシリンダーからてこで中央シリンダーの吸排気を操作するので下にもぐらなくても前方から整備できたうえ、ロッド・クランク横のバルブギアを省略できる(普通は個々のシリンダーに1つずつつけるが、この方式はレバーで左右のバルブが中央シリンダーを操作する。)のでこまめな整備をしていれば狭軌でも理論上は使いやすい物だった((齋藤2007) p.168-169・253)。実際は理論上通りにはいかず、アメリカのウォーバッシュ鉄道クラスK5やニュージーランドのNZR 98などは使いにくく不評で短命に終わっている。日本で3気筒がはやらなかった理由について「狭軌だから」という文献が多いが、標準機で軌道の強度も大きい満鉄でもクランク軸の折損事故を起こしていた(『満洲鉄道発達史』高木宏之 著、株式会社潮書房光人社、2012年、ISBN 978-4-7698-1524-2、P139)他、イギリスでもグレズリー弁式の3シリンダー機では戦時中は整備が行き届かずにレバーのボールベアリングが擦り減り、ガタが生じた結果中央シリンダーが触れすぎてクランク車軸を痛めることがあった。(齋藤2007) p.258
  29. ^ 特に4気筒の場合は左右の動輪を挟んだシリンダーを2基ずつペアとした複式として設計することで、蒸気を有効に利用できる。そのため、ドイツ国鉄18.6形のようにボイラー性能さえ十分ならば、自重やサイズが1ランク上の単式2気筒機(01形)に匹敵するかこれを上回る性能を実現することも不可能ではない。
  30. ^ 例えば車両限界の制約が大きく単式のまま左右のシリンダーを大直径とすると各駅のホームに抵触する恐れがあったイギリスでは単式3・4気筒機の導入例が多く、自国の石炭資源産出量やその品質などの問題から特に燃費に神経質であったフランスでは複雑精緻な複式4気筒機が積極的に導入されている。
  31. ^ 3気筒でもグレズリーバルブギアが外側のバルブで内側を駆動するが、こちらはかなり神経質な機構だった。
  32. ^ 前述の振動を抑える3・4気筒はどちらも内側と外側のシリンダーで動きをずらしてロッドが逆の位置で動くことで重心移動による振動が小さくなるだけで、気筒を増やしても一斉に同じ方向に動いているのでは重心が動き、振動は減衰しない。

出典

  1. ^ (近藤2007) p.177
  2. ^ (齋藤2007) p.357(齋藤2018) p.86
  3. ^ 横堀 進 (PDF). 技術ダイジェスト 重油燃嶢機関車 . 日本国有鉄道鉄道技術研究所. https://www.jstage.jst.go.jp/article/jie1922/32/2/32_2_103/_pdf/-char/ja. 
  4. ^ (齋藤2007) p.255・359-360(齋藤2018) p.89
  5. ^ (齋藤2018) p.94-95
  6. ^ (萩原1977) p.102
  7. ^ (齋藤2007) p.306
  8. ^ (齋藤2018) p.101-102
  9. ^ (齋藤2018) p.24-25
  10. ^ (齋藤2007) p.299・430
  11. ^ a b (萩原1977) p.99
  12. ^ 日本の鉄道史セミナー』p.136
  13. ^ (齋藤2018) p.133-116
  14. ^ (萩原1977) p.102-103
  15. ^ (齋藤2018) 「第3章 より速く走るために」P.40-47
  16. ^ 蒸気機関車EX Vol.4 P71
  17. ^ 蒸気機関車EX Vol.4 PP68-69
  18. ^ 蒸気機関車EX Vol.4 P70
  19. ^ (齋藤2018) P83・194-195
  20. ^ C28 dan C53, Loko Uap Tercepat di IndonesiaKereta Api
  21. ^ Lokomotif C53Heritage - Kereta Api Indonesia
  22. ^ Lokomotif C28”. 2021年12月14日閲覧。
  23. ^ WORLD ENCYCLOPEDIY C28”. 2021年12月14日閲覧。
  24. ^ Engine Pass - New Zealand Railways P169 David Bruce Leitch 著 A.H.&A.W. Reed 発行 1967年
  25. ^ Vulcan Railcars in New Zealand P7 Neill J. Cooper 著 New Zealand Railway and Locomotive SocietyIncorporated 発行 1981年
  26. ^ (齋藤2007) p.288-289・327
  27. ^ a b (齋藤2007) p.436-437
  28. ^ 石井幸孝DD51物語」P95、JTBパブリッシング、2004年
  29. ^ a b (萩原1977) p.173
  30. ^ (萩原1977) p.172
  31. ^ 高桑 榮松 蒸気機関車運転室(キャブ)内労働衛生調査と事故防止対策 狩勝トンネル争議
  32. ^ 続・滋賀の技術小史
  33. ^ 杉山淳一の時事日想 鉄道のトンネルは、安全なのか
  34. ^ Service, Tribune News. “Steam engine causes forest fire, villagers enraged” (英語). Tribuneindia News Service. 2022年10月30日閲覧。
  35. ^ 茗荷, 傑「浅間山麓六里ヶ原周辺の土地機能回復過程に関する考察」、公益社団法人 日本地理学会、2009年、doi:10.14866/ajg.2009s.0.9.0 
  36. ^ 「鉄道ファン」2003年12月号P108 、西村勇夫の寄稿。「特急乗りには望みもないが、せめてなりたや局長に」ということまで当時の国鉄内部では言われていたという。
  37. ^ (齋藤2007) p.370・374-375
  38. ^ (齋藤2007) p.274-275
  39. ^ (齋藤2007) p.299-304
  40. ^ (齋藤2007) p.338-342
  41. ^ (齋藤2007) p.357
  42. ^ (齋藤2007) p.67
  43. ^ (齋藤2007) p.108-109
  44. ^ 多賀祐重「機関車鮭の煙管の長さに就て」『業務研究資料』第15巻第7. 号,1927年
  45. ^ 幻の国鉄車両 P32
  46. ^ 鉄道技術発達史 第4篇P.331
  47. ^ USATC steam locomotives
  48. ^ Cox, Stewart, Locomotive Panorama : P125
  49. ^ Locomotive type 141 P
  50. ^ https://min.news/history/9a9a6f07750cb49af547944415e1e76a.html
  51. ^ (齋藤2007) p.204-205
  52. ^ (齋藤2007) p.383
  53. ^ (齋藤2007) p.252-259・383・394-395
  54. ^ (齋藤2007) p.279-291
  55. ^ (齋藤2007) 「第4章 回転数アップ」P.50-56・60-62
  56. ^ (齋藤2007) P.72-74
  57. ^ (ロス2007) p.187
  58. ^ Report on "2 to 1" Gresley valve gear on L.N.E.R. 3-cylinder locomotives
  59. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P35The Railway & Canal Historical Society
  60. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P34The Railway & Canal Historical Society
  61. ^ PEPPERCORN A1 PACIFICSDon Ashton
  62. ^ A1 Tornado – repair updateSteam Locomotive Trust
  63. ^ What were the investment dilemmas of the LNER in the inter-war years and did they successfully overcome them? P44The Railway & Canal Historical Society
  64. ^ Institut de la gestion publique et du développement économique La SNCF au temps du Plan Marshall
  65. ^ 日本国有鉄道、1958、『鉄道技術発達史. 第5篇』、日本国有鉄道〈鉄道技術発達史〉 pp. 190
  66. ^ Revue générale des chemins de fer 1950年1月号 P21
  67. ^ Les locomotives légendaires La locomotive a vapeur 141 R de la SNCFAntiquités brocante de la tour
  68. ^ La 141R420Train à vapeur d'Auvergne / Association de la 141R420
  69. ^ 日本が、1台の機関車に専属の乗員を割り当てず、それぞれ別々の運用としたやり方に完全移行したのは戦前の昭和14年である。『鉄道技術発達史 第5篇 運転』出版者: 日本国有鉄道 P17.P188.P193
  70. ^ (近藤2007) p.206-207
  71. ^ (近藤2007) p.207-208
  72. ^ 岩本太郎「続・滋賀の技術小史」(PDF)『龍谷理工ジャーナル』第24巻第1号、龍谷大学理工学会、2012年、11-19,図巻頭1p、NAID 40019238069 
  73. ^ 鉄道辞典 上巻
  74. ^ 横堀進「重油燃焼機関車」『燃料協会誌』第32巻第2号、日本エネルギー学会、1953年、103-105頁、doi:10.3775/jie.32.103ISSN 0369-3775NAID 130003823552 
  75. ^ 鉄道技術発達史 第4篇 車両と機械 1-4章P321
  76. ^ 鉄道技術発達史 第4篇 車両と機械 1-4章P326
  77. ^ ボイラ研究 (83):出版者 日本ボイラ協会:出版年月日 1964-02 機関車用ボイラの2本バーナ式C重油併燃装置の試作について 日本国有鉄道長野工場 青木松雄/p18~25
  78. ^ 交通年鑑 昭和44年版:出版者交通協力会:出版年月日 1969 P222
  79. ^ 「SL甲組」の肖像1、椎橋俊之、ネコ・パブリッシング、2007年、 ISBN 978-4-7770-0427-0、p.57・103。
  80. ^ NHK BS プレミアムアーカイブス ハイビジョンスペシャル「煙はるかに 世界SL紀行 魔女の森に汽笛が響く〜ドイツ・ハルツ地方〜」5月22日放送
  81. ^ 火夫. コトバンクより。
  82. ^ 日本放送協会. “SL銀河 支えた検修員の“愛”と“情熱””. NHK盛岡放送局. 2023年12月24日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「蒸気機関車」の関連用語

蒸気機関車のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



蒸気機関車のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの蒸気機関車 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS