ジェットエンジン ジェットエンジンの種類

ジェットエンジン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/07 09:41 UTC 版)

ジェットエンジンの種類

ジェットエンジンは便宜的に以下のような種類に分けられる。

以下、上記の項目を個別に説明する。

ターボジェットエンジン

タービンの回転力により圧縮機を駆動して空気を圧縮し、その燃焼によって得られる排気流のみで推力を得る純粋なジェット推進式エンジン。ガスタービン型のジェットエンジンとしては最も基本的なもので、フランク・ホイットルやハンス・フォン・オハインが製作した初期のジェットエンジンもこのタイプであり、第二次世界大戦前後に研究・開発が飛躍的に進んで一気に普及した。ただし、排気流速がエンジン搭載機の速度より遥かに大きいために効率が悪く、後述するターボファンエンジンが完成するとそれに取って代わられていった。ジェット流量が1軸式ガスタービンの回転数と一体となり出力調整が自由に出来ない。

採用例
1939年に初飛行したHe178への搭載に始まり、第二次世界大戦中にはドイツで未熟ながらも実用化された。初期のものは耐久時間が短く、低推力・高燃費で安全性にも問題を抱えていたが、朝鮮戦争が始まる1950年頃には一応完成の域に達し、1952年にはイギリスで世界初のジェット旅客機コメット1の運用が開始された。その後も改良が続けられアフターバーナーの使用と共に戦闘機や一部旅客機(コンコルド[9]Tu-144)の超音速飛行を可能たらしめたが、騒音[10]や排煙(初期のジェット旅客機は黒煙を排出していた)、燃費[10]の問題からターボプロップやターボファンが実用化されると順次交代していった。ベトナム戦争ではターボジェット戦闘機F-4MiG-21が活躍するものの、それ以降は戦闘機といえど低バイパス比のターボファンが一般化し、現在では純粋なターボジェットの需要はほとんどなくなっている。

ターボファンエンジン

低バイパス比ターボファンの概略図。戦闘機に搭載されるものは上図のようにバイパス空気流を燃焼部と外周部の間に通し、ノズル部で合流させる。
高バイパス比ターボファンの概略図。旅客機に採用されるのはこのタイプが多いが、実際は上図外側にナセルがあるためバイパス流が解放されるのはもっと後方である。

ターボジェットの吸気口近傍・圧縮機前方にファンを備えるエンジンで、ファンの外周部を通過する一部の流入空気は圧縮機以降に導かれずにコアエンジン外周部へバイパスされる。このファンはプロペラと類似の役割を担い、大部分の空気を飛行速度と同等の速さで排出することで効率の高い軸推力を得ている。ファン後流の一部はステータやファンダクトによってジェット推進力を得る。ファンを駆動する軸は一番内側に存在するコアエンジンとは別の同軸エンジンとみなすことが出来る。一般的には2軸式ガスタービンエンジンの後方の低圧タービンによってファンと低圧コンプレッサを駆動する。イギリスのロールスロイス社製の高バイパスターボファンエンジンは更に3軸目がファン駆動専用のフリータービンとなっている。基本原理はファン駆動用の別エンジンがコアエンジンと燃焼室と流体を共有しながら串刺しになっていて、コアエンジンの安定した持続運転とファン駆動力の出力調整を両立している。ファンにはプロペラのようなピッチを変更する機構はなく、減速機を介さずに2軸又は3軸目のタービン回転がそのまま伝達されるためプロペラに比べて回転速度は大きい。ターボジェットに比べて総排気流速度が低く抑えられるため、亜音速の輸送機に利用されている。ただし、後述するバイパス空気量の小さいターボファンはターボジェットの性格に近くなり、超音速ジェット戦闘機のエンジンとして主流となっている。

ターボファンの特徴をまとめるとターボジェットに比べて以下のようなメリットがある。

  • 総合的な排気流速度は遅くなるものの、全体として流量が増えるため、結果的に推力が増大する。
  • 燃焼に使わない空気を低速で排出して推力に利用するため、推進効率が良くなり燃費が向上する。
  • バイパス空気流が燃焼ガスを覆うため、騒音が抑えられる。
  • 排気に含まれる酸素の割合が大きくなるので、アフターバーナー使用時の出力増大効果が高い(ただし、これは、アフターバーナー使用時の燃費の悪化がより著しい事をも意味する)。

前方にあるファンのみを通過して、エンジン本体の圧縮機に吸い込まれない空気量Waf をエンジン本体の圧縮機に吸い込まれる空気量Wap で割った値Waf/Wapバイパス比 (By-Pass Ratio, BPR) と呼ぶ。例えばバイパス比5のエンジンならば、ファンだけを通過する空気量は圧縮機から燃焼室へと流れる空気量の5倍にあたる。この値は地上静止状態で定義される事が多く、実際には飛行マッハ数によって変化する。通常、バイパス比が高いほど燃費が良く、亜音速飛行に適した性能特性を持つ。

一般的に、バイパス比が1前後のものを低バイパス比、4以上のものを高バイパス比[6]と呼ぶ場合が多い。初期にはバイパス比が小さいものしか製造できなかったが、今日ではバイパス比9に迫るエンジンが稼動しており、ボーイング787のような新型旅客機向けにバイパス比10を越えるものの開発も行われている。一方、戦闘機用のものはバイパス比が小さく、その値が1を切るものもある。

コア分離型超高バイパス比ターボファン
ターボファンの派生型として、現在JAXAで構想されているコア分離型超高バイパス比ターボファンエンジンといわれるものがある。これはファンとガスタービン部分(コアエンジン)を分離し、ガスタービン側で圧縮した空気をファンにバイパスして駆動しようというアイデアである。これにより10を越える高バイパス比が実現し、ファンのコントロールやレイアウトの自由度を増すことで複数のリフトファンおよび推進ファンの設置とそれらのスイッチングを行い、今までにない大型VTOL機を製作することも可能だとされている[11]
採用例
現在のジェット旅客機の多くが高バイパス比ターボファンを採用しているが、低バイパス比ターボファンを搭載した旅客機も近年まで製造され続けた。超音速飛行を行う戦闘機の場合、バイパス比の低い、より高速に適したものが採用されている。特に著しいのはF-22が装備するF119であり、バイパス比は約0.2と非常に小さい。これはアフターバーナーなしでの超音速巡航を可能にするためである。

ギヤードターボファンエンジン

ギヤードターボファンエンジン
1.大きなファン 2.遊星歯車

低圧圧縮機の回転を遊星歯車により減速して、大型ファンの回転数を最適化したターボファンエンジン。従来の減速ギヤーを備えないターボファンエンジンにおいては、小さな圧縮機のタービンと大きなファンを同じ回転軸で駆動しているために、回転数は同期したものとなる。そのため、バイパス比が拡大し、ファンの直径が大きくなるに従って、タービンの高回転数はファンの効率的な出力を生み出す回転数よりも高いものとなり、必ずしも適していない回転数によるファン効率の低下が現れるようになる。減速ギヤーを備えたギヤードターボファンエンジン (Geared turbo-fan engine, GTF) では、それぞれの回転軸を最適な比率で回転させ、ファンの回転数を抑えることで、大きなファンにより高バイパス化エンジンにおいても効率が最適化できる。

採用例
Mitsubishi SpaceJet、エアバス A320neo、ボンバルディア Cシリーズ、イルクート MS-21、エンブラエル E-Jet E2で採用されている。

ターボプロップエンジン

ターボプロップの概略図。高速のタービン回転はエンジン前部の減速機によって減速される。

ターボジェットやターボファンと同じくガスタービンを備えるが、その出力のほぼ全て(約90%)をプロペラの駆動に使うエンジン。タービンで得られる出力の一部は圧縮機の駆動に使われるが、残りは減速機を介してプロペラを回転させる。このプロペラによる推力が大部分を占める(ジェット排気による推力も10%程度あるとされる)。つまりジェット推進というよりは等速可変ピッチプロペラ用の動力源であり、特徴もそれに準じる。等速でよいということなので初期のターボプロップエンジンは1軸式のものもあったが、現在ではほとんど2軸式のターボファンに似た構成になっている。たとえ回転数が一定でも出力調整ができるからである。

ただし、レシプロエンジン駆動のプロペラ機に比べると出力は格段に大きく(軸出力が10,000hpを超えるものもある)、高高度での飛行もレシプロエンジンよりは得意である。

ターボプロップには以下のような特徴がある。

  • 亜音速域ではターボファンエンジンよりも燃費に優れ、マッハ0.6程度までの速度域での飛行に適する。
  • ターボファンよりも推力が小さい。
  • ターボファンに比べ高速および高高度での飛行には適さない。
  • プロペラはファンに比べて低速回転であるため、ターボファンよりも高周波の騒音を出さない。

総じてプロペラは、直径が大きいほど効率が良い。ターボファンのファンを「半径が小さいプロペラ」とみなせば、断然ターボプロップのほうが効率が良い事を意味する。ただし、プロペラは音速に近づいたあたりから効率が悪化し、直径の大きなプロペラは外周部分から音速に達する。よって高速域においては、ターボファンのほうがより効率が良い。

亜音速域での燃費もターボファンの進化により優位性は少なくなっている。

出力単位は軸馬力 (shaft horse power, shp) で表すが、排気推力を併せた総計等価出力 (effective horse power, ehp) で表す場合もある。

採用例

巡航速度ではターボファン機に劣るものの短距離における燃費の良さや短い滑走路でも離着陸が可能な点を活かし、小規模の航空会社による地域空港からハブ空港への運行など、採算性は悪いが一定の利用者が存在する中・近距離の路線向けの中・小型の旅客機(ミニ・エアライナー)に採用されている。

アメリカでは航空路が自由化された1978年以降に需要が急増し市場も急成長した。日本では離島と本州を結ぶ路線を中心にサーブ340BDHC-8 Q300/Q400が就航している。また戦後唯一の日本製旅客機YS-11もターボプロップ機であった。

軍用機としてはターボプロップを装備したC-130輸送機とP-3Cは世界中の軍で使用されている(民間型も存在)。C-130は燃費の良さからだけの選択ではなく、ターボファンよりも排気の温度 (EGT; Exhaust gas temperature) が格段に低いことを活かし、赤外線追尾式の地対空ミサイルから捕捉されにくくすることも意図されている。P-3Cは対潜哨戒のためエンジン停止を含むロイター飛行による低速での長時間飛行、目的海域上空への移動時に必要な速力、ジェット機と燃料を共通化できるという点が評価されている。

特徴的なターボプロップ機として、旧ソ連が開発したTu-95爆撃機が挙げられる。2重反転プロペラを採用して最高速度は900km/h台に達し、「世界最速のプロペラ機」として知られた。この速度域ではターボファンのほうが効率は良いが、開発当時はまだターボファンは実用化されていなかったため、ターボプロップの性能を極限まで引き出す形になった。アメリカのB-52爆撃機も同様にターボプロップを搭載しようとしていたが断念し、ターボジェットが採用された。

現在ではターボファンでもターボプロップに迫る燃費を達成できるため、ミニ・エアライナーはリージョナルジェットに置き換わりつつあり、軍用機市場もP-8P-1などターボファン機が後継として選ばれている。

プロップファン
ギヤードターボファンエンジンターボファンエンジンから派生したエンジンであるに対し、プロップファンエンジンターボプロップエンジンから派生したものである。プロペラの翅の枚数を増やしさらにトルク相殺の為に二重反転プロペラにして(単にプロペラを換装して一重プロペラの翅の枚数を増やしただけのものもある)極限まで効率の向上を追求した一種にプロップファンアドバンスド・ターボプロップ (Advanced Turbo Prop, ATP) とも)がある。これは圧縮機の外周部(ナセル外側)に薄くて強い後退角を有する、径が小さめのプロペラ(可変ピッチ機構付き)を備えるもので、プロペラ端で発生する衝撃波を抑えつつ高速(マッハ0.8程度)と高効率を両立させようとしたものである。1980年代の原油価格の高騰に触発されて各所で研究開発が行われたが、プロペラの振動など解決すべき技術的課題のためにそのメリットがかすみ、通常のターボファンの性能向上(高バイパス比の実現)とともに開発は放棄されていった。数少ない実用例の一つにウクライナの輸送機An-70がある。

ターボシャフトエンジン

ターボシャフトの概略図。圧縮機駆動用タービンの外側に軸出力用のフリータービンを備える。上図ではエンジン後方にシャフトが延ばされているが、ターボプロップと同様に前方へシャフトを出す場合もある。

圧縮機駆動用のタービンと別に、出力専用のタービン(フリータービン)を備える純粋なガスタービンエンジン。フリータービンにより取り出された出力はシャフトと減速機を介して駆動力となる。ヘリコプターやプロペラ機、船舶、戦車といった乗り物やコジェネレーション用発電機の動力として利用されている。 回転翼を駆動する航空機用エンジンとして使われる時もジェット推進を使わないのでジェットエンジンとは呼ばない(ベル社が206シリーズ時代に「ジェットヘリ」という商標を使っていたために「ジェットエンジン」だという誤解が広まったが、単にベル社のヘリコプターの商標であって、エンジンは「ジェットエンジン」ではない)。

ターボプロップとほぼ同じ構造を持つが、フリータービンのため回転数と出力調整の幅が大きく取れる利点がある(ターボプロップは等速プロペラを前提としている)。また、エンジンの始動時のスタータの負荷を減らせられる利点もある。ターボシャフトエンジンは最も汎用的なガスタービンエンジンである。航空機以外の動力源では単にそう記載されることも多い。

採用例
主にヘリコプターのローターの動力として広く用いられているが、その理由は多発エンジンでもパワートレインを共有しているためにエンジンの単発停止時に他のエンジンを道連れにしないためである。フリータービンにしないと生き残ったエンジンが死んだエンジンのコンプレッサーまで駆動することになり、一緒にエンジンストールする可能性が高くなる。フリータービンを用いたターボシャフトエンジンは生き残った側の負担増にも粘り強く耐えられるし、停止した側も他者に過大な負担をかけない。パイロットは時間的な余裕があるので停止したエンジンを完全にパワートレインから分離する操作も容易に出来る。

近年ではティルトローターV-22など)にも採用され、アメリカ陸軍の戦車M1エイブラムス海上自衛隊こんごう型護衛艦水中翼船1号型ミサイル艇LCAC等も駆動力としてターボシャフトを用いている。

ラムジェットエンジン

スパイク前端の超音速流はエンジン内部にいくにつれて亜音速流となり加圧される。燃焼後は排気ノズルから超音速の排気が行われる。

羽根車を用いないのでガスタービンエンジンではないがジェットエンジンの一つで、機械的な圧縮機を使用することなく、吸気口前面に生ずるラム (ram) 圧により圧縮された空気に燃料を吹き付けて燃焼させ、推力を得る方式のエンジン[12]。吸気口から突出した前後に可動するスパイクを有しており、そのスパイク先端で発生させた衝撃波面をエンジンナセルに接するように制御する。こうして生じた衝撃波面の後方では亜音速の空気流が生まれ、非常に高い動圧が静圧へと変換される(ほぼ等エントロピーでの圧縮が行われる)。

マッハ3から5程度の極超音速飛行に向く出力特性を持っているが、高速の空気流の衝突を前提としているため、機速が設計速度を下回ると著しく効率が悪化して充分な推力を発生することができない(もちろん静止時は動作しない)。そのために設計速度域へ到達させるための推進系が別途必要となる。この別の推進系としてはロケットやターボジェット(後述)が使用されている。

採用例
フランスルネ・レドゥク英語版は1930年代から独自のラムジェット推進機の構想を温め、世界初のラムジェット機レドゥク010を1949年に初飛行させた。その後ラムジェット戦闘機としての改良が続けられたが結局採用されることは無く、1958年に開発は終了した。
一方、アメリカでは1950年にYH32 ホーネットというラムジェット駆動のヘリコプターが試作されている。これはローター端にラムジェットを設置して回転させるというもので、ローター回転によるトルクが発生せずテールローターが不要というメリットがあったが、航続距離や隠密性の問題から実用性が低かったため導入には至らなかった。同様のヘリコプターは戦後に萱場製作所でも試作されている。
ミサイルには採用例が多い。その多くはラムジェットの作動域まで固体ロケットブースターによって加速する。多段式の他、ブースター部分の構造物をラムジェット用にも利用するタイプもあり、後者はインテグラル・ロケット・ラムジェット (integral rocket ramjet、IRR) などという。アメリカのボマーク、イギリスのシーダート、フランスのASMP、旧ソ連では特に多用されており、2K11クルーグ2K12クブP-270モスキートP-800オーニクスKh-31などがある。

ターボ・ラムジェットエンジン

ラムジェットエンジンの内部にターボジェットと同等の機構を取り付け、ラムジェットが作動する高速に達するまではターボジェットとして機能する形式のエンジン。もしくはターボジェットの外周部にラムジェットの機能を付加する形式ともいえ、高バイパス比ターボジェット (high-bypass-ratio turbojet) とも呼ばれる。流入空気をターボジェットへ回すか、完全にバイパスしてラムジェットとして機能させるかを飛行速度に応じてバイパスフラップで制御する。

採用例
現在のところ、上記のコンセプトに基づいて製作された実用エンジンは存在しない。

SR-71とその原型機(A-12YF-12)に搭載されたプラット・アンド・ホイットニー J58シリーズ[13]をターボラムジェットエンジンに分類している事例が多く見られる。超音速飛行時にJ58はインレット部の空気吸入・圧縮で出力の8割を生み出す[14]。しかし、超音速機においてインレットで推力が発生する事例は珍しくない。またJ58においてもインレット部で燃焼を行うわけではなく、燃焼室に等エントロピ圧縮された空気が供給されるわけでもない。製造元の Pratt & Whitney 社はJ58をターボジェットと分類している。

なお、ターボ・ラムジェット機としてしばしばMiG-25が挙げられることがある。しかしこれは誤りであり、同機は3000km/hの高速飛行時に得られるラム圧を考慮して圧縮機の圧縮比を低く抑えてあるだけで、ラムジェットとしてのエンジン動作は行っていない。

スクラムジェットエンジン

基本はラムジェットと同様であるが、超音速燃焼が行われる点が異なる。

スーパーソニック・コンバスチョン・ラムジェット (supersonic combustion ramjet) を略してスクラムジェットと呼ぶ[15]。基本的にはラムジェットと同じ発想のエンジンであるが、ラムジェットよりもより高速域で作動する事を前提とし、そのためエンジン内に吸入された空気流が、加圧された後もなお、超音速流が保たれる点が通常のラムジェットと異なる。空気流が高速であるため、燃焼が緩やかな場合は燃焼が終了しないうちにエンジン外に排出される事になる。そのためスクラムジェットエンジンの場合は速やかな燃焼を実現する必要がある。そのための燃料としては、現在は主に水素が用いられ、今のところ動作時間は数十秒が限度である(ただし、それでも大きな加速力を得ることができる)。極超音速での動作を目的としており、単段式宇宙往還機 (SSTO) を実現するための要素技術の一つとされる。

採用例
近年、日本を含めた主要先進各国でスクラムジェット機の構想や開発が行われているが、2007年現在で確実な成果を収めているのはNASAの開発したX-43である。X-43はスクラムジェットが動作するまでペガサス・ロケットにより加速される仕組みであり、2004年11月16日にマッハ9.8(時速12,144 km、7,546 mph)というエアブリージングエンジン搭載機としての最高速度記録を打ち立てている。

ロケット・ラムジェット複合型エンジン

ラムジェットエンジンの内部に、固体燃料ロケットエンジンの固体燃料を充填したもの。固体燃料が存在する間はロケットエンジンとして動作するが、燃料を燃やし尽くすとその後はラムジェットエンジンとして動作する。

採用例

ミサイルにおいて採用される。P-800オーニクスやKh-31など。

パルスジェットエンジン

吸気・燃焼・排気が間欠的に行われる。

空気取り入れ口に設けられたシャッターを高速で開閉することにより、燃焼過程と排気・吸気が交互かつ間欠的に行われる方式のエンジン。空気の圧縮には燃料の着火により生じる衝撃波の一種(爆轟波デトネーションパルスと呼ばれる)によって発生する高圧を利用する。燃焼が間欠のため燃焼ガスに晒される部分の耐熱性が連続燃焼ガスタービンのそれより低くて済み、構造がきわめて単純なために製造コストが安く済むが、シャッターの開閉と燃料噴射・点火のタイミング制御が開発当初は課題となった。間欠吸排気に由来する独特の排気音が特徴である。エンジン全体がU字型をした、シャッター(バルブ)の無いバルブレス・パルスジェットエンジンもある。どちらも振動や騒音が大きく燃費も悪いため、圧縮機を備えたガスタービン型のジェットエンジンの登場と共に開発されることはなくなった。

採用例
第二次世界大戦時のドイツにおいて、V1飛行爆弾の推進器という実用例がある。同機では、使い捨てというミサイルの性質と、構造が簡単で安価に作れるというこのエンジンの性質、またタービン-コンプレッサー型のエンジンの開発の難しさもあり重宝された。前述のようにその後の世界では利点が薄く難点が多いため、広く実用された例はほぼ無い。

外部動力圧縮ジェットエンジン

MiG-13のモータージェットの概略図。レシプロエンジン(黄色)はプロペラと圧縮機(緑色)の駆動のために用いられた。ちなみにコアンダ=1910やカプロニ・カンピーニ N.1などはプロペラは備えていない。

ジェットエンジンの黎明期に存在した圧縮機を外部動力(通常はレシプロエンジン)で駆動する形式のエンジンで、タービンは持たない。モータージェットサーモジェット(セコンド・カンピニによる命名)と呼ばれた。ガスタービンエンジンの実現が困難であった時期に考案・試作されたが、燃焼ガスにより得られる推力はごく小さく、レシプロエンジン駆動のプロペラ推進に及ぶものではなかったために計画や実験の段階で開発が放棄されたものが多い。

採用例
最初の機体は1910年にアンリ・コアンダが製作したコアンダ=1910であるが、これはまともな飛行を行うことなく事故で失われた。その後、革新技術としてジェットエンジンが希求されるようになってから現れたのがイタリアで1940年に初飛行したカプロニ・カンピーニ N.1である。第二次世界大戦中にも各国でモータージェット機がいくつか計画されているが、一応実機が完成したのは日本の桜花22型ツ11搭載)と旧ソ連のMiG-13Su-5くらいであった。

特殊なジェットエンジン

広義にジェットエンジンに分類できるものを以下に示す。

原子力ジェットエンジン
吸入した圧縮空気を原子炉の炉心で加熱し噴射する方式。1950年代のアメリカにおいて、ジェット推進装置を搭載した実験機X-6の開発が試みられた。しかし遮蔽試験機NB-36Hによる予備的試験のみで計画は終了した。排気に多大な放射性物質が含まれる危険がある事、気体の熱交換効率は液体と比べて小さい事、放射線遮蔽のため搭載機体の重量が増大する事が問題とされた。
恒星間ラムジェット(バサード・ラムジェット)
恒星間宇宙船の動力として古くから考えられているアイデアで、基本はラムジェットである。星間ガスを巨大なラムスクープで集め、推進剤とする。

注釈

  1. ^ ジェットエンジンが実用化される前の未熟な時代には、様々な呼称や代替構成要素の実験機が用いられ、例えば、モータージェット機カプロニ・カンピーニ N.1はカンピーニロケットとも呼ばれ、戦前の日本の研究機関では現在で言うところのジェット推進のことをロケット推進と言われた。
  2. ^ この場合、燃料の質量は空気の質量に比べ小さいと仮定し、無視している。
  3. ^ 推進効率 ηは、最終的に機体の推進に使われた仕事率 TV と、エンジンが発生する出力 P との比で表され、
    と書ける。V := V となるように排気速度を調節してやれば最大の効率 η = 1.0 が得られるように思えるが、このとき推力は
    となるので現実には達成できない。プロペラ推進の場合は η = 0.8 程度が限度であり、ジェット推進の場合はそれより低くなる。
  4. ^ アニュラ型の燃焼缶は厳密には内外2枚のライナの前部はカウルと呼ばれる覆いになっている。
  5. ^ アフターバーナーとはもともとゼネラル・エレクトリックでの呼称で、特許商標としての競合を避けるためにロールス・ロイスではリヒートプラット・アンド・ホイットニーではオーギュメンターという名称が使用されている。
  6. ^ レシプロ機関と異なりジェットエンジンでは、吸い込んだ空気の25%程しか酸素を利用していないため、排気中には75%ほどが残っている。
  7. ^ デフューザーによってガスの流速を落とす。ノズル内にはフレームホルダーも備える。アフターバーナーを使用しない間は、ノズルは排気ダクトとして働く。
  8. ^ 「逆噴射装置」とも呼ばれるが、エンジン内の圧縮機とタービンが逆回転して吸気口と排気口が入れ替わるわけではない。

出典

  1. ^ 佐藤 2005, pp. 190, 192
  2. ^ ASCII.jp:JALのジェットエンジン整備はミリ単位の繊細な作業だった!
  3. ^ 佐藤 2005, p. 189
  4. ^ 佐藤 2005, p. 190
  5. ^ a b c d e 見森昭編 『タービン・エンジン』 社団法人日本航空技術協会、2008年3月1日第1版第1刷発行、ISBN 9784902151329
  6. ^ a b c 佐藤 2005, p. 202
  7. ^ 松岡増二著 『新航空工学講座8 ジェット・エンジン(構造編)』 日本航空技術協会 ISBN 4-930858-48-8
  8. ^ JAL - 航空豆知識
  9. ^ 佐藤 2005, p. 191
  10. ^ a b 佐藤 2005, p. 196
  11. ^ 齊藤喜夫, 遠藤征紀, 松田幸雄, 杉山七契, 菅原昇, 山本一臣「コア分離型ターボファン・エンジン」『航空宇宙技術研究所報告』TR-1289、航空宇宙技術研究所、1996年4月、1-7頁、CRID 1523388080992312960ISSN 0389-4010 
  12. ^ 佐藤 2005, p. 215
  13. ^ The heart of the SR-71 "Blackbird" : The mighty J-58 engine
  14. ^ Pratt & Whitney J58 Turbojet
  15. ^ 佐藤 2005, p. 216






ジェットエンジンと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ジェットエンジン」の関連用語

ジェットエンジンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ジェットエンジンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのジェットエンジン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS