ニューラルネットワークとは? わかりやすく解説

Weblio 辞書 > 固有名詞の種類 > 方式・規則 > 主義・方式 > 学問 > 学問 > ニューラルネットワークの意味・解説 

ニューラル‐ネットワーク【neural network】

読み方:にゅーらるねっとわーく

人間の脳神経系抽象化し情報分散処理システムとしてとらえたモデル。ニューロネットワーク。神経回路網。


ニューラルネットワーク(NRN)


ニューラルネットワーク

【英】neural network

ニューラルネットワークとは、情報処理計算モデルのうち、人間の脳働き模倣して構築され計算モデルのことである。

ニューラルネットワークのシステムは、比較単純な処理単位ニューロン神経細胞)と定義し多数ニューロン情報入出力伝達網で接続した脳の仕組み似せて構築されている。

ニューラルネットワークは、ニューロコンピュータ呼ばれるコンピュータシステム計算モデルとなっている。ニューロコンピュータ自己学習実現することができる新世代人口知能として、盛んに研究・開発が行われている。

産業・技術のほかの用語一覧
情報処理:  五心  交差比率  文字セット  ニューラルネットワーク  ニューロコンピュータ  ラップアラウンド  例示字形

ニューラルネットワーク

英語 neural network

生物神経系の高度な情報処理機構工学的模倣し入力出力相互にきめ細か関連づけて複雑な制御を行う情報処理技術のこと。例えオートエアコンにこれを導入すると人の感覚に近い綴密な空調制御が可能となる。スイッチや各センサーなどから信号を送る入力層、その情報をもとに入力出力優先順位をはかりながら相互関係調整を行う中間層、それらの総和をもとに必要な制御量を算出してオートエアコン・アンプリファイアに出力する出力層の3種ニューロン(神経細胞)モデル複数絡み合ってネットワーク構成している。

参照 オートエアコン

ニューラルネットワーク

※「大車林」の内容は、発行日である2004年時点の情報となっております。

ニューラルネットワーク

読み方にゅーらるねっとわーく
【英】:neural network

概要

(1) 生物体の神経回路網のこと.

(2) 神経回路構造ニューロン(neuron)の作用部分的に模倣した, コンピュータ電子回路用いた人工的な神経回路網」で, 記憶, 認識, 連想などの機能実現する工学的システムのこと. ノイズ対す頑健性(robustness), 類似入力対す汎化性(generalization), 学習容易な高い適応性(adaptability), 並列処理への潜在的可能性をもつ.

詳説

 ニューラルネットワーク (neural network) は神経回路網のことであり, その機能コンピュータ専用ハードウェア模倣したものを人工ニューラルネットワーク (artificial neural network) という. ORなどの分野で単にニューラルネットワークという場合は, 多く人工ニューラルネットワークのことを指し, 具体的に比較単純な線形信号処理ユニット結合することで構成されるネットワークのことと考えることが多い. ニューラルネットワークは本質的に並列分散処理的であり, 自己組織的であるといった特徴内包している.

 ニューラルネットワークの歴史概観すると以下のようになる. 1943年にマッカロック(W. McCulloch)とピッツW. Pitts) [1] によるしきい値素子モデル提案された. 1949年心理学者D. Hebbの "The Organization of Behavior" [2] において示されシナプス強化則とも言われる学習方法に関する考え方は, その後提案され多くニューラルネット学習方法の基礎となっている. 1962年, ローゼンブラットF. Rosenblatt)によるパーセプトロン [3] (perceptron) が提案されたが, 1969年, ミンスキー(M. Minsky)とパパート(S. Papert)によるパーセプトロン限界呈示, 何人かの研究者による初期バージョンの後, 1986年ラメルハートD. Rumelhart), ヒントンG. Hinton), ウイリアムスR. Williams)によりまとめられ階層型ニューラルネットワークの誤差逆伝播法 (back propagation) の定式化 [4] などを経て, 近年は, 脳の機能実現強く意識した研究盛んに行われている.

 ニューラルネットワークは2つ側面から最適化と関係が深い. まず1つは, ニューラルネットワークの機能としての最適化, もう1つは, 何らかの機能実現するためのニューラルネットワークの学習における最適化である.

 ホップフィールドネットワーク [5] (Hopfield network) は, 連想記憶行った巡回セールスマン問題などの最適化問題を解くために考え出されたニューラルネットワークで, 1982年, ホップフィールド (J. J. Hopfield) により提案された. 記憶したパターン情報は定係数T_{ij}\, 中に埋めこまれる. このモデル1984年, 連続モデル拡張された. 離散および連続モデル合わせてホップフィールドネットワーク呼ばれる. ホップフィールドタンク(T. W. Tank)は1985年に, ホップフィールドネットワーク巡回セールスマン問題解法用い方法示し [6] , ニューラルネットワークの最適化への応用の道を開いた.

 ニューラルネットワークによる学習は, 教師あり学習, 教師なし学習大別される. 教師あり学習とは, サンプルデータにおいて, 入力に対して出力値が与えられ, 多数入出力組の関係を同時に実現するようにモデルの中のパラメータ調整するモデルであり, その用途としては, 分類及び非線形回帰がある. この2つ本質的な違い教師出力信号として2値信号用いるか実数値を用いるかという点である. パーセプトロン, 階層型ネットワーク, RBF (radial basis function) ネットワークなどがあり, データクラス判定や非線形関数近似を行うモデルを, 例 (examples) としてのデータから構築する. しきい値関数使ったモデルでは, パーセプトロンどのように, 誤り訂正学習用いられる. また, ロジスティック (logistic) 関数などの微分可能関数用いたモデルでは, 二乗誤差最小化するような評価関数学習用いられる. 階層型ニューラルネット二乗誤差最小化取り入れると, 誤差逆伝播法導かれる. 教師なし学習とは, 入力ベクトルけがあるもので, 入力ベクトルに関する分布情報学習するものであり, 情報圧縮, 確率密度関数モデル用いた推論などに応用される. コホネン(T. Kohonen)の自己組織化マップ (self organizing map), ガウス混合モデル (Gaussian mixture model), k-meansクラスタリングなどが代表的な例である.

 人工知能においては, 記号論理ベースにしたシンボリストモデル (symbolist model) に対し, ニューラルネットワークの相互結合をもじったコネクショニストモデル (connectionist model) は, 相互に対極にあるものとして対比されてきた. シンボリストモデルは論理的な説明適しており, コネクショニストモデルは学習が容易であるという特長を持つ反面, 一般にシンボリストモデルは学習が困難であり, コネクショニストモデルは説明能力欠けということがいえる. コネクショニストモデルが説明能力欠けるというのは, 入力空間自在に切り分けることができるがゆえにその複雑な切り口言語的に説明することが困難なためであり, 欠点というよりもそのモデルの持つ特質からくる特徴であって, 特に言語的な説明要しない制御などの分野では明らかに優れた能力発揮する. また, 日々売上データから顧客特徴抽出したり, クレジットカード入会審査行ったりするデータマイニングdata mining)の分野においても有力な手法として注目されている.



参考文献

[1] W. W. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," Bull. Math. Biophysics, 5 (1943), 115-133.

[2] A. O. Hebb, The Organization of Behavior, Wiley, 1949. 白井 訳, 『行動機構』, 岩波書店, 1957.

[3] F. Rosenblatt, Principles of Neurodynamics, Spartan, 1962.

[4] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning Internal Representation by Error Propagation", in D. E. Rumelhart, J. L. McClelland and the PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, Foundations, MIT Press, 1986. 甘利監訳), 『PDPモデル-認知科学ニューロン回路網探索-』, 産業図書, 1989.

[5] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities," in Proceedings of the National Academy of Sciences U.S.A., 79, 2554-2558, 1982.

[6] J. J. Hopfield and T. W. Tank, "Neural Computation of Decisions in Optimization Problems," Biological Cybernetics, 52 (1985), 141-152.


ニューラルネットワーク

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/14 03:18 UTC 版)

(人工知能の分野で)ニューラルネットワーク: neural network; NN、神経網)は、生物学習メカニズムを模倣した機械学習手法として広く知られているものであり[1]、「ニューロン」と呼ばれる計算ユニットをもち、生物の神経系のメカニズムを模倣しているものである[1]。人間の脳の神経網を模した数理モデル[2]。模倣対象となった生物のニューラルネットワーク(神経網)とはっきり区別する場合は、人工ニューラルネットワーク (: artificial neural network) と呼ばれる。

以下では説明の都合上[注釈 1]、人工的なニューラルネットワークのほうは「人工ニューラルネットワーク」あるいは単に「ニューラルネットワーク」と呼び、生物のそれは「生物のニューラルネットワーク」あるいは「生物の神経網」、ヒトの頭脳のそれは「ヒトのニューラルネットワーク」あるいは「ヒトの神経網」と表記することにする。

概要

生物のニューロン

人工ニューラルネットワークを理解するには、そもそもそれがどのようなものを模倣しようとしているの知っておく必要があるので説明する。ヒトの神経系にはニューロンという細胞があり、ニューロン同士は互いに軸索 (axon) と樹状突起 (dendrite) を介して繋がっている。ニューロンは樹状突起で他の神経細胞から情報を受け取り、細胞内で情報処理してから、軸索で他のニューロンに情報を伝達する[3]。そして、軸索と樹状突起が結合する部分をシナプス(synapse)という[3][1](右図も参照。クリックして拡大して見ていただきたい。紫色の部分がひとつのニューロンであり、Dendrite, Axonなどが示されている。)。 このシナプスの結合強度というのは、外的な刺激に反応してちょくちょく変化する。このシナプス結合強度の変化こそが生物における「学習」のメカニズムである[1][注釈 2]

人工ニューロン

ヒトの神経網を模した人工ニューラルネットワークでは、計算ユニットが《重み》を介して繋がり、この《重み》がヒトの神経網のシナプス結合の「強度」と似た役割を担っている[1]。各ユニットへの入力は《重み》によって強さが変化するように作られており、ユニットにおける関数計算に影響を与える。ニューラルネットワークというのは、入力用ニューロンから出力用ニューロンへと向かって計算値を伝播させてゆくが、その過程で《重み》をパラメータとして利用し、入力の関 数を計算する。(ただし計算値が出力用ニューロンへと伝播されてゆくというだけでは入力パターンからある決まった出力パターンが出るだけなので、さほど有益というわけではない[4]。)《重み》が変化することで「学習」が起きる[1](ここが重要なのである[4])。

(右図も参照のこと。右図で「weights」や、丸で囲まれた「w」が縦に並んでいるのが《重み》である。)

生物のニューラルネットワークに与えられる外的刺激に相当するものとして、人工ニューラルネットワークでは「訓練データ」が与えられる[1]。いくつか方法があるが、たとえば訓練データとして入力データと出力ラベルが与えられ、たとえば何かの画像データとそれについての正しいラベルが与えられる(たとえばリンゴの画像データとappleというラベル、オレンジの画像データとorangeというラベルが与えられる)。ある入力に対して予測される出力が本当のラベルとどの程度一致するかを計算することで、ニューラルネットワークの《重み》についてフィードバックを得られ[1]、ニューロン間の《重み》は誤差(予測誤差)に応じて、誤差が減少するように調整される[1]。多数のニューロン間で《重み》の調整を繰り返し行うことで次第に計算関数が改善され、より正確な予測をできるようになる。(たとえばオレンジの画像データを提示されると「orange」と正しいラベルを答えられるようになる[1]。) 《重み》の調整方法の代表的なものがバックプロパゲーションである[4]

なお、ヒトのニューロンを模したユニットは人工ニューロンあるいはノードと呼ばれる。

相互作用ニューラルネットワークモデルの一例

右図の、多数のユニットが結合しネットワークを構成している数理モデルは、ニューラルネットワークのほんの一例である。(実際にはニューロンの数もさまざまに設定可能であるし、結合のしかたもさまざまに設定可能である。右図はあくまで、とりあえず説明にとりかかるための "一例" と理解いただきたい。 ユニットの構成(例: 線形変換の次元、非線形変換の有無・種類)やネットワークの構造(例: ユニットの数・階層構造・相互結合、入出力の再帰)に関して様々な選択肢があり、様々なモデルが提唱されている。)

各ユニットは入力の線形変換を必ず含み、多くの場合それに後続する非線形変換を含む(

多層パーセプトロンの模式図

RBFネットワーク

誤差逆伝播法に用いられる活性化関数放射基底関数を用いたニューラルネットワーク

  • RBFネットワーク英語版
  • 一般回帰ニューラルネットワーク英語版(GRNN、General Regression Neural Network)- 正規化したRBFネットワーク

自己組織化写像

自己組織化写像はコホネンが1982年に提案した教師なし学習モデルであり、多次元データのクラスタリング、可視化などに用いられる。自己組織化マップ、コホネンマップとも呼ばれる。

畳み込みニューラルネットワーク

畳み込みニューラルネットワーク

畳み込みニューラルネットワークとは層間が全結合ではない順伝播型ニューラルネットワークの一種。

画像を対象とするために用いられることが多い。

再帰型ニューラルネットワーク(リカレントニューラルネット、フィードバックニューラルネット)

フィードフォワードニューラルネットと違い、双方向に信号が伝播するモデル。すべてのノードが他の全てのノードと結合を持っている場合、全結合リカレントニューラルネットと呼ぶ。シーケンシャルなデータに対して有効で、自然言語処理音声動画の解析などに利用される[14]

Transformer

Self-Attention機構(自己注意機構)を利用したモデルである[13]。再帰型ニューラルネットワークの代替として考案された[13]

従来の自然言語処理用モデルに比べ計算量が少なく構造も単純なため、自然言語処理に使われることが多い[15]

確率的ニューラルネット

乱数による確率的な動作を導入した人工ニューラルネットワークモデル。モンテカルロ法のような統計的標本抽出手法と考えることができる。

スパイキングニューラルネットワーク

ニューラルネットワークをより生物学的な脳の働きに近づけるため、活動電位(スパイク)を重視して作られた人工ニューラルネットワークモデル。スパイクが発生するタイミングを情報と考える。ディープラーニングよりも扱える問題の範囲が広い次世代技術と言われている。ニューラルネットワークの処理は逐次処理のノイマン型コンピュータでは処理効率が低く、活動電位まで模倣する場合には処理効率がさらに低下するため、実用する際には専用プロセッサとして実装される場合が多い。

2015年現在、スパイキングNN処理ユニットを積んだコンシューマー向けのチップとしては、QualcommSnapdragon 820が登場する予定となっている[16][17]

複素ニューラルネットワーク

入出力信号やパラメータ(重み閾値)が複素数値であるようなニューラルネットワークで活性化関数は必然的に複素関数になる[18]

利点

情報の表現
入力信号と出力信号が複素数(2次元)であるため、複素数で表現された信号はもとより、2次元情報を自然に表現可能[18]。また特に波動情報(複素振幅)を扱うのに適した汎化能力(回転と拡大縮小)を持ち、エレクトロニクスや量子計算の分野に好適である。四元数ニューラルネットワークは3次元の回転の扱いに優れるなど、高次複素数ニューラルネットワークの利用も進む。
学習特性
階層型の複素ニューラルネットワークの学習速度は、実ニューラルネットワークに比べて2〜3倍速く、しかも必要とするパラメータ(重みと閾値)の総数が約半分で済む[注釈 5][18]。学習結果は波動情報(複素振幅)を表現することに整合する汎化特性を示す[19]

生成モデル/統計モデル

生成モデル(統計モデルとも)は、データが母集団の確率分布に従って生成されると仮定しそのパラメータを学習するニューラルネットワークの総称である。統計的機械学習の一種といえる。モデル(=母集団)からのサンプリングによりデータ生成が可能な点が特徴である(詳しくは推計統計学 § 統計モデル機械学習 § 統計的機械学習)。

自己回帰型生成ネット

臨床
神経科学英語版
認知
神経科学
学際的
領域
コンセプト

ニューラルネットワーク

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/04 00:57 UTC 版)

人工知能」の記事における「ニューラルネットワーク」の解説

パターン認識特化したアルゴリズムである。コネクショニズムとほぼ同義

※この「ニューラルネットワーク」の解説は、「人工知能」の解説の一部です。
「ニューラルネットワーク」を含む「人工知能」の記事については、「人工知能」の概要を参照ください。

ウィキペディア小見出し辞書の「ニューラルネットワーク」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



ニューラルネットワークと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「ニューラルネットワーク」の関連用語





5
シー‐エヌ‐エヌ デジタル大辞泉
90% |||||






ニューラルネットワークのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ニューラルネットワークのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
気象庁気象庁
©2024 Japan Meteorological Agency. All rights reserved.
なお、「気象庁 予報用語」には、気象庁の「気象庁が天気予報等で用いる予報用語」に掲載されている2009年11月現在の情報から引用しております。
IT用語辞典バイナリIT用語辞典バイナリ
Copyright © 2005-2024 Weblio 辞書 IT用語辞典バイナリさくいん。 この記事は、IT用語辞典バイナリの【ニューラルネットワーク】の記事を利用しております。
三栄書房三栄書房
Copyright c San-eishobo Publishing Co.,Ltd.All Rights Reserved.
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2024 (社)日本オペレーションズ・リサーチ学会 All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのニューラルネットワーク (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの人工知能 (改訂履歴)、機械学習 (改訂履歴)、人工神経 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS