にゅーらるねっとわーくとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > にゅーらるねっとわーくの意味・解説 

ニューラル‐ネットワーク【neural network】

読み方:にゅーらるねっとわーく

人間の脳神経系抽象化し情報分散処理システムとしてとらえたモデル。ニューロネットワーク。神経回路網。


ニューラルネットワーク

読み方:にゅーらるねっとわーく
【英】:neural network

概要

(1) 生物体の神経回路網のこと.

(2) 神経回路構造ニューロン(neuron)の作用部分的に模倣した, コンピュータ電子回路用いた人工的な神経回路網」で, 記憶, 認識, 連想などの機能実現する工学的システムのこと. ノイズ対す頑健性(robustness), 類似入力対す汎化性(generalization), 学習容易な高い適応性(adaptability), 並列処理への潜在的可能性をもつ.

詳説

 ニューラルネットワーク (neural network) は神経回路網のことであり, その機能コンピュータ専用ハードウェア模倣したものを人工ニューラルネットワーク (artificial neural network) という. ORなどの分野で単にニューラルネットワークという場合は, 多く人工ニューラルネットワークのことを指し, 具体的に比較単純な非線形信号処理ユニット結合することで構成されるネットワークのことと考えることが多い. ニューラルネットワークは本質的に並列分散処理的であり, 自己組織的であるといった特徴内包している.

 ニューラルネットワークの歴史概観すると以下のようになる. 1943年にマッカロック(W. McCulloch)とピッツW. Pitts) [1] によるしきい値素子モデル提案された. 1949年心理学者D. Hebbの "The Organization of Behavior" [2] において示されシナプス強化則とも言われる学習方法に関する考え方は, その後提案され多くニューラルネット学習方法の基礎となっている. 1962年, ローゼンブラットF. Rosenblatt)によるパーセプトロン [3] (perceptron) が提案されたが, 1969年, ミンスキー(M. Minsky)とパパート(S. Papert)によるパーセプトロン限界呈示, 何人かの研究者による初期バージョンの後, 1986年ラメルハートD. Rumelhart), ヒントンG. Hinton), ウイリアムスR. Williams)によりまとめられ階層型ニューラルネットワークの誤差逆伝播法 (back propagation) の定式化 [4] などを経て, 近年は, 脳の機能実現強く意識した研究盛んに行われている.

 ニューラルネットワークは2つ側面から最適化と関係が深い. まず1つは, ニューラルネットワークの機能としての最適化, もう1つは, 何らかの機能実現するためのニューラルネットワークの学習における最適化である.

 ホップフィールドネットワーク [5] (Hopfield network) は, 連想記憶行った巡回セールスマン問題などの最適化問題を解くために考え出されたニューラルネットワークで, 1982年, ホップフィールド (J. J. Hopfield) により提案された. 記憶したパターン情報は定係数T_{ij}\, 中に埋めこまれる. このモデル1984年, 連続モデル拡張された. 離散および連続モデル合わせてホップフィールドネットワーク呼ばれる. ホップフィールドタンク(T. W. Tank)は1985年に, ホップフィールドネットワーク巡回セールスマン問題解法用い方法示し [6] , ニューラルネットワークの最適化への応用の道を開いた.

 ニューラルネットワークによる学習は, 教師あり学習, 教師なし学習大別される. 教師あり学習とは, サンプルデータにおいて, 入力に対して出力値が与えられ, 多数入出力組の関係を同時に実現するようにモデルの中のパラメータ調整するモデルであり, その用途としては, 分類及び非線形回帰がある. この2つ本質的な違い教師出力信号として2値信号用いるか実数値を用いるかという点である. パーセプトロン, 階層型ネットワーク, RBF (radial basis function) ネットワークなどがあり, データクラス判定非線形関数近似を行うモデルを, 例 (examples) としてのデータから構築する. しきい値関数使ったモデルでは, パーセプトロンどのように, 誤り訂正学習用いられる. また, ロジスティック (logistic) 関数などの微分可能関数用いたモデルでは, 二乗誤差最小化するような評価関数学習用いられる. 階層型ニューラルネット二乗誤差最小化取り入れると, 誤差逆伝播法導かれる. 教師なし学習とは, 入力ベクトルけがあるもので, 入力ベクトルに関する分布情報学習するものであり, 情報圧縮, 確率密度関数モデル用いた推論などに応用される. コホネン(T. Kohonen)の自己組織化マップ (self organizing map), ガウス混合モデル (Gaussian mixture model), k-meansクラスタリングなどが代表的な例である.

 人工知能においては, 記号論理ベースにしたシンボリストモデル (symbolist model) に対し, ニューラルネットワークの相互結合をもじったコネクショニストモデル (connectionist model) は, 相互に対極にあるものとして対比されてきた. シンボリストモデルは論理的な説明適しており, コネクショニストモデルは学習が容易であるという特長を持つ反面, 一般にシンボリストモデルは学習が困難であり, コネクショニストモデルは説明能力欠けということがいえる. コネクショニストモデルが説明能力欠けるというのは, 入力空間自在に切り分けることができるがゆえにその複雑な切り口言語的に説明することが困難なためであり, 欠点というよりもそのモデルの持つ特質からくる特徴であって, 特に言語的な説明要しない制御などの分野では明らかに優れた能力発揮する. また, 日々売上データから顧客特徴抽出したり, クレジットカード入会審査行ったりするデータマイニングdata mining)の分野においても有力な手法として注目されている.



参考文献

[1] W. W. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," Bull. Math. Biophysics, 5 (1943), 115-133.

[2] A. O. Hebb, The Organization of Behavior, Wiley, 1949. 白井 訳, 『行動機構』, 岩波書店, 1957.

[3] F. Rosenblatt, Principles of Neurodynamics, Spartan, 1962.

[4] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning Internal Representation by Error Propagation", in D. E. Rumelhart, J. L. McClelland and the PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, Foundations, MIT Press, 1986. 甘利監訳), 『PDPモデル-認知科学ニューロン回路網探索-』, 産業図書, 1989.

[5] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities," in Proceedings of the National Academy of Sciences U.S.A., 79, 2554-2558, 1982.

[6] J. J. Hopfield and T. W. Tank, "Neural Computation of Decisions in Optimization Problems," Biological Cybernetics, 52 (1985), 141-152.



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「にゅーらるねっとわーく」の関連用語

1
100% |||||

2
100% |||||

3
ニューラル‐ネットワーク デジタル大辞泉
100% |||||

4
100% |||||

5
100% |||||


にゅーらるねっとわーくのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



にゅーらるねっとわーくのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2025 (社)日本オペレーションズ・リサーチ学会 All rights reserved.

©2025 GRAS Group, Inc.RSS