独立成分分析とは? わかりやすく解説

独立成分分析

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/08 21:33 UTC 版)

独立成分分析(どくりつせいぶんぶんせき、: independent component analysis、ICA)は、多変量の信号を複数の加法的な成分に分離するための計算手法である。各成分は、ガウス的でない信号で相互に統計的独立なものを想定する。これはブラインド信号分離の特殊な場合である。

概要

独立性の仮定が正しいなら、混合信号のブラインドICA分離は非常に良い結果となる。混合信号でなくとも、分析のためにこれを行う場合もある。典型的なICAの応用として、室内で録音された複数の人間の会話から特定の人物の声を抜き出す音源分離がある。一般に遅延や反響がないと仮定することで問題が単純化される。考慮すべき重要な点として、N個の信号源があるとき、個々を分離するには少なくともN個の観測装置(マイクロフォンなど)が必要となる。

この統計的手法は、予測される成分の統計的独立性を最大化するようにその独立成分(ファクター、潜在変数、信号源など)を見つける。中心極限定理によると、非ガウス性[注釈 1]は成分の独立性を測る手法の1つである。非ガウス性は例えば、尖度ネゲントロピーの近似で測ることができる。相互情報量も信号間の独立性の尺度となる。

ICAの典型的アルゴリズムでは、複雑さを削減するために前段階として、中心化[注釈 2]、白色化[注釈 3]、次元削減(圧縮)[注釈 4]などを行う。白色化と次元削減は主成分分析特異値分解[注釈 5]などによってなされる。ICAのアルゴリズムとしては、InfomaxインフォマックスFastICAファストアイシーエイJADEジェイドなど様々なものがある。

ICA はブラインド信号分離で重要であり、具体的な応用がいくつもある。

数学的定義

線形独立成分分析はノイズのない場合とノイズのある場合に分けられ、ノイズのない ICA はノイズのある ICA の特別な場合である。非線形 ICA はそれらとは別と考えられる。

一般的定義

データは確率変数ベクトル カテゴリ


独立成分分析

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/04/29 14:41 UTC 版)

脳磁図」の記事における「独立成分分析」の解説

独立成分分析 (ICA) は時間に対して統計的に独立異な信号分け信号処理法である。この手法は初め外来ノイズを含む脳磁図脳電図信号から瞬き眼球運動顔面筋心拍等によるアーティファクト除去するのに使われていた。しかし、ICA統計的独立性基盤とするため、高い相関を持つ脳活動に対して分解能が下がる。

※この「独立成分分析」の解説は、「脳磁図」の解説の一部です。
「独立成分分析」を含む「脳磁図」の記事については、「脳磁図」の概要を参照ください。

ウィキペディア小見出し辞書の「独立成分分析」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「独立成分分析」の関連用語









9
32% |||||


独立成分分析のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



独立成分分析のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの独立成分分析 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの脳磁図 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS