線形変換とは? わかりやすく解説

線型写像

(線形変換 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/14 23:07 UTC 版)

数学の特に線型代数学における線型変換(せんけいへんかん、: linear transformation一次変換)あるいは線型写像(せんけいしゃぞう、: linear mapping)は、ベクトルの加法とスカラー倍を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。

概要

抽象代数学の言葉を用いれば、線型写像とは(上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像をとするを成す。

「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、: linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、: linear form, one-form; 線型形式; 1-形式)とも呼ばれる[注釈 1]

定義

VW とを同じ 𝔽 の上のベクトル空間とする。V から W への写像 f が、任意のベクトル x, yV と任意のスカラー c𝔽 に対し、

  1. 加法性: f(x + y) = f(x) + f(y),
  2. 斉一次性: f(cx) = cf (x)

をともに満たすとき[注釈 2]f𝔽 上の線型写像 または簡単に 𝔽-線型写像という。考えているベクトル空間および線型写像がどの体上のものであるかが明らかなときには、省略して単に「 fV から W への線型写像である」などということもある[注釈 3]

上記の二性質を合わせて線型性と呼び、また有限個のスカラー λi とベクトル vi に対して

線型性:
出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。2016年2月

関連項目

外部リンク


線形変換

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/14 06:14 UTC 版)

ジョルダン標準形」の記事における「線形変換」の解説

代数的閉体 K 上の有限次元線形空間を V とし、線形変換 ƒ : V → V をとる。ƒ が半単純(semisimple)であるとは、線形空間 V が V = ⨁ V λ {\displaystyle V=\bigoplus V_{\lambda }} と ƒ の固有値 λ ∈ K の固有空間 Vλ = { v ∈ V | ƒ(v) = λv } の直和として表せることである。また ƒ が 冪零nilpotent) であるとは、ある自然数 r が存在して fr = 0 となることである。 任意の線形変換 ƒ : V → V に対して半単純線形変換 ƒs と冪零線形変換 ƒn で f = f s + f n , f s f n − f n f s = 0 {\displaystyle f=f_{\rm {s}}+f_{\rm {n}},\quad f_{\mathrm {s} }f_{\mathrm {n} }-f_{\mathrm {n} }f_{\mathrm {s} }=0} を満たすものが一意的に存在する。このとき ƒ = ƒs + ƒn のことを(加法的ジョルダン分解といい、ƒs を ƒ の半単純成分、ƒn を ƒ の冪零成分という。 線形空間 V の基底 { e i j ∣ i = 1 , … , k ;   j = 1 , … , n i } {\displaystyle \{\,e_{ij}\mid i=1,\dotsc ,k;~j=1,\dotsc ,n_{i}\,\}} が線形変換 ƒ のジョルダン基底 であるとは、ei0 = 0 とおいたとき f ( e i j ) = λ i e i j + e i ( j − 1 ) {\displaystyle f(e_{ij})=\lambda _{i}e_{ij}+e_{i(j-1)}} が基底任意の元 eij について成り立つことである。ジョルダン基底に関する ƒ の表現行列ジョルダン標準形である。

※この「線形変換」の解説は、「ジョルダン標準形」の解説の一部です。
「線形変換」を含む「ジョルダン標準形」の記事については、「ジョルダン標準形」の概要を参照ください。

ウィキペディア小見出し辞書の「線形変換」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「線形変換」の関連用語

線形変換のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



線形変換のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの線型写像 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのジョルダン標準形 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS