多重線型代数とは? わかりやすく解説

Weblio 辞書 > 固有名詞の種類 > 方式・規則 > 主義・方式 > 学問 > 学問 > 多重線型代数の意味・解説 

多重線型代数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/27 04:20 UTC 版)

数学における多重線型代数(たじゅうせんけいだいすう、英語: multilinear algebra)とは、線型空間における多重線型性 (multilinearity) を扱う代数学の分野。多重線型性は典型的には線型環におけるの構造に現れている。AK –代数とするとき、自然数 n に対し、A 上で定義された n 変数写像 (x 1, ..., xn) → x 1x 2xn はある変数以外の変数を固定して一変数の写像と見なしたときに K –線型写像を定めている。より一般に K 上のベクトル空間 E 上の n 変数写像についてもある変数以外の変数を固定して一変数写像と見なしたときに K 線型写像になっているようなものを考えることができるが、このような写像は多重線型写像 (multilinear map) とよばれる。多重線型写像は何らかの意味でベクトルの「積」を表していると考えられる。

多重線型性を捉える基本的な対象としてテンソル代数(てんそるだいすう、tensor algebra)、対称代数(たいしょうだいすう、symmetric algebra)、外積代数(がいせきだいすう、exterior algebra)が挙げられる。テンソル代数におけるテンソル積によって、ベクトルの積として最も一般的なものが定式化される。また、対称積や外積によって一定の付加的な条件を満たすような積が捉えられる。

歴史

多重線型代数の起源は様々な形で19世紀における一次方程式線型代数)の研究やテンソル解析などのいくつかの分野に辿ることができる。20世紀前半の微分幾何学一般相対性理論、あるいは応用数学の様々な分野におけるテンソルの使用によって多重線型代数の概念はさらに発展させられた。

20世紀の中頃になってテンソルの理論はより抽象的な形に再定式化された。ブルバキによる『代数』[1](の「多重線型代数」章)の執筆はこの過程に強い影響を与えており、実際のところ、多重線型代数 という用語自体も彼らによって作られたものだとされている。この時代にはホモロジー代数が多重線型代数の新たな応用先として現れていた。

1940年代における代数的位相幾何学の発展により、空間の直積ホモロジー群テンソル積との対応(キュネットの定理英語版)などの理解のためにもテンソル積を純代数的に定式化し取り扱う必然性が生まれていた。 ここでの問題には多くの概念が関わっている。たとえば、ヘルマン・グラスマンに始まるウェッジ積の概念はクロス積の概念を一般化したものになっているが、微分形式の理論と、続くドラーム・コホモロジーの理論に不可欠な形で利用されている。

ブルバキによる多重線型代数の再構成において、それまでの多重線型代数の一流儀であった四元数(より一般にはリー群との関係から導かれるような)を通じてテンソルを考える方法は打ち捨てられることになった。ブルバキが採用したのはより圏論的な方法論であり、普遍性をもとにした議論によって多重線型代数の理論は大きく整理された。 こうして、テンソル空間 を考えることによって多重線型性の問題が単なる線型性の問題へと言い換えられる、ともいうべき理解が得られた。この過程で用いられる操作は純代数的なものであり、幾何学的な直感は見かけ上完全に排除されている。多重線型代数の理論を代数的・圏論的に整理したことによって多重線型的な問題の「最適解」の概念がはっきりとしたものになる。その場その場に応じた、座標系を用いたりして幾何学的な概念に訴える必要無しに、すべてのものが「自然に」構成できることになる。

定義

以下、K可換環とする。

特徴付け

テンソル代数

K –加群 Eテンソル代数 TE とは、可換とは限らない K –代数であって E からの線型写像 E → TE を持ち、次の条件を満たすもののことである:(可換とは限らない)K –代数 A への K –線型写像 EA が与えられたとき、図式

この節の加筆が望まれています。

フォック空間

ボゾン場第二量子化を表すフォック空間として可分ヒルベルト空間対称代数が現れ、元のヒルベルト空間のベクトルによる掛け算は非有界作用素を表している。

出典

参考文献

関連項目


多重線型代数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/08/04 02:59 UTC 版)

ペンローズのグラフ記法」の記事における「多重線型代数」の解説

多重線型代数の言葉においてはそれぞれの図形多重線型関数を表す。図形に付けられた線は関数入力出力表し図形結合本質上の関数の合成である。

※この「多重線型代数」の解説は、「ペンローズのグラフ記法」の解説の一部です。
「多重線型代数」を含む「ペンローズのグラフ記法」の記事については、「ペンローズのグラフ記法」の概要を参照ください。

ウィキペディア小見出し辞書の「多重線型代数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



多重線型代数と同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「多重線型代数」の関連用語

多重線型代数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



多重線型代数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの多重線型代数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのペンローズのグラフ記法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS