ぎょうれつ‐しき〔ギヤウレツ‐〕【行列式】
行列式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/02 19:28 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2017年10月) |

数学における行列式(ぎょうれつしき、英: determinant)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換に対して線形空間の拡大率ということができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。
概要
X を実2次正方行列
この平行六面体の体積はベクトル r1, r2, r3 の成す 3 次正方行列の行列式の絶対値に一致する。 同様にして一般の次数のN次正方行列 X に対し、X の定める線型変換が超立体(N次図形)の超体積を何倍にしているかという符号付き拡大率を X の行列式として定義することができる。これは行列の成分を変数とする多項式の形で書け、二次の場合と同様にこれは正則性など正方行列の重要な性質に対する指標を与えている。一次方程式系が与えられるとき、方程式の係数行列に対してその行列式の値を調べることにより、方程式系の根の状態をある程度知ることができる。特にクラメルの公式により、根が一組である線型方程式系の根の公式が行列式を用いて表示される。
定義
抽象的な定義
K を可換環とし、E を階数 n の A 上の自由加群とする。E の n-次外冪 ⋀nE は A 上階数1の自由加群である。E 上の K-線型写像 ϕ について、⋀nE 上に引き起こされる K-準同型
ベルヌーイ数や二項係数について書かれた関孝和による「括要算法」(1712年) 高階の行列に関する行列式の定義はそれから百年ほどたって日本で和算の関孝和、田中由真、そしてドイツのライプニッツによりほとんど同時にかつ独立に与えられた。
関孝和ら和算家による発見
関孝和は『解伏題之法』で行列式について述べている。本手稿のテーマは多変数の高次方程式から変数を消去して一変数の方程式に帰着することで、変数消去の一般的方法、つまり終結式の理論を提示している。本手稿では3次と4次に関しては行列式の正しい表示を与えているが、より高次の5次の場合はつねに0になってしまい、あきらかに間違っている。これが単純な誤記の類であるか否かは不明である。また、次節で述べるように、関西で活躍していた田中由真や井関知辰らの研究も同様の問題を考えており、類似の結果にたどり着いている。
これらの研究では、いずれも行列式は終結式を表すための手段にすぎず、行列式そのものを意味のある対象として捉えていたかについては異論がある。実際、それをあらわす用語すら提案されていない。また、日本が鎖国によって外界から遮断されていたこともあり、西洋数学に影響を与えることはなかった。
ライプニッツによる行列式の発見
同じ時期にライプニッツは数多くの線型方程式系を研究していたが、その頃は行列記法がまだなかったので、彼は未知数の係数を、現在のような ai,j のかわりに ij のように添字の対によって表現していた。1678年に彼は3つの未知数に関する3つの方程式に興味を抱き、列に関する行列式の展開式を与えている。同じ年に彼は4次の行列式についても(符号の間違いを別にすれば)正しい式を与えている。ちなみにライプニッツはこの成果を公表しなかったので、50年後に彼とは独立に再発見されるまでこの成果は人々に認識されていなかった。
一般的な行列式
関孝和は、最初の手稿からやや後の『大成算経』(建部賢明、建部賢弘と共著、執筆は1683年〈天和3年〉 - 1710年〈宝永7年〉頃)で、第一列についての余因子展開を一般の場合について正しく与えている。また、田中由真は『算学紛解』(1690年(元禄3年)ごろ)で 5次までの行列式を、井関知辰は『算法発揮』(1690年(元禄3年)刊)で第一行についての余因子展開を一般の場合で与えている。ちなみに関や田中の著作は写本のみであるが、井関の著作は出版がなされている。
ヨーロッパにおいても、行列式の理論は日本の場合と同じく(一次ではなく)高次の代数方程式の変数消去の研究のために発展した。1748年にマクローリンの(死後に刊行された)代数学の著作において4つの未知数に関する4つの方程式の系の解が正しい形で述べられ、行列式の研究が再開されることになった。1750年にクラメルは(証明抜きで)N 個の変数に関する N 個の方程式からなる方程式の解を求める規則を定式化した。この行列式の計算方法は順列の符号に基づく繊細なものだった。
ベズー(1764年)やファンデルモント(1771年、ヴァンデルモンドの行列式の計算)などがそれに続き、1772年にはラプラスによって余因子展開の公式が確立された。さらに翌年にはラグランジュによって行列式と体積との関係が発見されている。
今日の determinant(決定するもの)に当たる言葉が初めて現れたのはガウスによる1801年の Disquisitiones Arithmeticae である。そこで彼は二次形式の判別式(今日的な意味での行列式の特別な例と見なせる)を用いている。彼はさらに行列式と積の関係についても後少しのところまでいっている。
現代的な行列式の概念の確立
現代的な意味での行列式という用語はコーシーによって初めて導入された[4]。彼はそれまでに得られていた知識を統合し、1812年には積と行列式の関係を発表している(同じ年にビネも独立に証明をあたえていた)。コーシーは平行して準同型の簡約化についての基礎付けの研究も行っている。
1841年に「クレレ誌」で発表されたヤコビの3本の著作によって行列式の概念の重要性が確立された。ヤコビによって初めて行列式の計算の系統的なアルゴリズムが与えられ、またヤコビアンの概念によって写像の行列式も同様に考察できるようになった。行列の枠組みはケイリーとシルベスターによって導入された。ちなみにケイリーは逆行列の公式を確立させており、行列式の記号として縦棒を導入したのも彼である[4]。
行列式の理論は様々な対称性を持つような行列についての行列式の研究や、線型微分方程式系のロンスキー行列式など数学の様々な分野に新たに行列式を持ち込むことが追究されている。
いくつかの行列式
2次対称群
サラスの方法 2 次あるいは 3 次の正方行列については、左上から右下へ向かう方向に「+」、右上から左下へ向かう方向に「−」の符号を付けて積を取りそれらの和を取ると行列式が求められる。これを「サラスの方法」または「サラス展開」、「たすきがけの法」と言う。n 次正方行列に対して、サラスの方法で取り出せる項の数は高々 2n であり、一般には行列式の総項数 n! に比べてはるかに少ないため、4次以上の正方行列にはこの方法は使えない。
三角行列の行列式は、主対角成分の総乗をとることで求まる。三角行列の主対角成分には固有値が並ぶから、行列式の値は固有値の総乗である。このことは、基底の取替えによる行列の三角化可能性と行列式の乗法性によって、一般の正方行列に対しても正しい。つまり、与えられた行列の行列式の値は、その行列の固有値の総乗に等しい。
発展的な話題
小行列式
詳細は「小行列式」を参照正方行列とは限らない一般の行列 A ≔ (aij) に対して、その行と列からそれぞれ k 個選び、それらに属する成分からなる正方行列の行列式を考えることができる:
脚注
参考文献
![]() | 出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 |
- ニコラ・ブルバキ 著、銀林浩、清水達雄ほか 訳『代数』東京図書、東京、1968年。
- 行列と行列式の歴史に関する解説(英語)
- 「審査結果:「17世紀日本と18-19世紀西洋の行列式、終結式及び判別式」に対する審査結果(数学史の研究)」『数理解析研究所講究録』第1392巻、京都大学数理解析研究所、2004年9月、130-131頁、CRID 1050282677150617984、hdl:2433/49756、ISSN 1880-2818。
- Vein, R., & Dale, P. (2006). Determinants and their applications in mathematical physics (Vol. 134). Springer Science & Business Media.
- 西田吾郎『線形代数学』京都大学学術出版会、2009年6月22日。ISBN 978-4-87698-757-3。
- 数式処理のコンピューター(1)計算の完全機械化(未来技術)『日経産業新聞』1982年7月20日
- 和算の大家、関孝和没後300年庶民も愛した数学再興目指し記念の催し『東京朝刊』2007年11月11日
- 三宅敏恒『線形代数学-初歩からジョルダン標準形へ』培風館、2008年
- 中神祥臣、柳井晴夫:「矩形行列の行列式」、丸善出版、ISBN 978-4-621-06508-2(2012年12月)。※ 正方ではない行列に対して行列式を一般化する理論のひとつについての解説。
外部リンク
- 『行列式の3つの定義・性質・意味』 - 高校数学の美しい物語
- 行列式の性質、KIT金沢工業大学、2013年7月14日
- 行列と行列式、大東文化大学、2014年12月12日
- 『行列式』 - コトバンク
- Weisstein, Eric W. "Determinant". mathworld.wolfram.com (英語).
- determinant in nLab
- determinant - PlanetMath.
- Definition:Determinant at ProofWiki
- Suprunenko, D.A. (2001), “Determinant”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4