行列の対数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/11 14:33 UTC 版)
数学において、行列の対数(ぎょうれつのたいすう、英語: Logarithm of a matrix)とは、行列の指数関数を施したとき与えられた行列と一致するようなもう一つの行列をいう。つまり行列の対数函数は、スカラー変数スカラー値の対数函数の一般化であり、また行列の指数関数のある意味での逆関数を与えるものとなる。必ずしも全ての行列がその対数を持つわけではなく、また対数を持つ場合であっても複数の行列を対数として持ち得る。対数を持つ行列は何らかのリー群に属し、かつ、その対数はそのリー群に付随するリー代数の元に対応するため、行列の対数函数の研究はリー理論につながる。
- ^ Higham (2008), Theorem 1.27
- ^ Higham (2008), Theorem 1.31
- ^ Culver (1966)
- ^ Engø (2001)
- ^ Hall 2015 Theorem 3.42
- 行列の対数のページへのリンク