リー代数とは? わかりやすく解説

リー代数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/29 09:37 UTC 版)

数学において、リー代数 (リーだいすう、Lie algebra)、もしくはリー環(リーかん)[注 1]は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 [x, y] を備えたベクトル空間である。無限小変換英語版 (infinitesimal transformation) の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。

リー代数はリー群と密接な関係にある。リー群とはでも滑らかな多様体でもあるようなもので、積と逆元を取る群演算が滑らかであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群が被覆英語版による違いを除いて一意的に存在する(リーの第三定理英語版)。このリー群とリー代数の間の対応英語版によってリー群をリー代数によって研究することができる。

定義

リー代数は、ある

リー環 (Lie ring)

数学における(狭義の)リー環[注 3](リーかん、: Lie ring)はリー代数とよく似た構造で、リー代数を一般化した代数的構造と見ることもできるが、降中心列英語版の研究においても自然に生じてくる。

リー環と関連する概念としてリー群リー代数があるが、(が加法に関してになるのとは異なり)リー環は加法に関して必ずしもリー群を成さず、他方で任意のリー代数はリー環の例である。任意の結合環交換子括弧積

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。2014年7月

外部リンク


リー代数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/10/11 06:55 UTC 版)

微分同相写像」の記事における「リー代数」の解説

特に、M の微分同相写像群のリー代数は M 上すべてのベクトル場からなりベクトル場リーブラケット英語版)を備えている。幾分形式的に、これは空間各点における座標 x に小さ変化加えることによってわかる: x μ → x μ + ε h μ ( x ) {\displaystyle x^{\mu }\to x^{\mu }+\varepsilon h^{\mu }(x)} L h = h μ ( x ) ∂ ∂ x μ . {\displaystyle L_{h}=h^{\mu }(x){\frac {\partial }{\partial x_{\mu }}}.}

※この「リー代数」の解説は、「微分同相写像」の解説の一部です。
「リー代数」を含む「微分同相写像」の記事については、「微分同相写像」の概要を参照ください。

ウィキペディア小見出し辞書の「リー代数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「リー代数」の関連用語

リー代数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リー代数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリー代数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの微分同相写像 (改訂履歴)、表現論 (改訂履歴)、ローレンツ群 (改訂履歴)、カルタン行列 (改訂履歴)、ヤングの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS