キリング形式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/13 09:46 UTC 版)
![]() |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
群論 → リー群 リー群 |
---|
![]() |
|
数学において、ヴィルヘルム・キリング (Wilhelm Killing) の名に因むキリング形式 (Killing form) とは、リー群とリー環の理論において基本的な役割を果たす対称双線型形式である。
歴史と名称
キリング形式は本質的に Élie Cartan (1894) によって彼の thesis においてリー環論に導入された。「キリング形式」という名前はアルマン・ボレルの1951年の論文において初めに現れたが、彼はなぜその用語を選んだのか覚えていないと2001年に述べた。ボレルは名称が不適切に思われ「カルタン形式」と呼ぶのがより正しいだろうと認めている[1]。ヴィルヘルム・キリングはリー代数の正則半単純元の特性方程式の係数が随伴群のもとで不変であることに気付いていて、そのことからキリング形式(すなわち2次の係数)が不変であることが従う。しかし彼はこの事実をそれほど利用しなかった。カルタンが利用した基本的な結果はカルタンの判定条件で、これはキリング形式が非退化であることとリー環が単純リー環の直和であることが同値であるというものである[1]。
定義
体 K 上のリー環 g を考える。g の任意の元 x は g の随伴自己準同型 ad(x) (adx とも書かれる)をリーブラケットを用いて
- キリング形式のページへのリンク