一般線型群とは? わかりやすく解説

一般線型群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/11/22 10:23 UTC 版)

ナビゲーションに移動 検索に移動

数学において、一般線型群(いっぱんせんけいぐん、: general linear group)とは線型空間上の自己同型写像のなすのこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。

定義

Fとする[注 1]F 線型空間 V 上 の一般線型群とは V 上の線型写像全体 End(V)[注 2] のうち全単射 な写像全体が写像の合成に関してなすのことをいい、GL(V) または Aut(V)[注 3] と表す。

あるいは n 次元 F 線型空間 V基底 B = (v1, …, vn) をひとつ選び固定して、数ベクトル空間 Fn の元 (a1, …, an) と線型空間 V の元 a1v1 + … + anvn とを同一視することによって、 n正方行列全体 Mn(F) のうち正則な行列全体が行列の積に関してなす群のことを一般線型群ということも多い。この場合には GLn(F) または GL(n, F) と表す。行列式がゼロでない行列全体と言い換えてもよい。

どちらの定義も同じ対象を定めていると思ってよい。実際、n 次元 F 線型空間 V 上の一般線型群 GL(V)n 次正則行列全体 GLn(F) との間には次で定まる同型写像がある。

GL2(C)

複素数体 C 上の2次正則行列全体 GL2(C) は次のように表せる。

GL2(F2)

二元体 F2 = Z/2Z 上の 2 次正則行列全体 GL2(F2)3対称群同型で次の 6 つの行列からなる。

性質

有限一般線型群の位数

q元体 Fq 上の一般線型群 GLn(Fq)位数は次のように表せる[1]

特に、主対角成分がすべて 1 の上あるいは下三角行列からなる部分群 U[注 4] は位数 qn(n − 1)/2 なので有限体の位数 q を割り切る素数 p に関するSylow部分群である[2]

Bruhat分解

一般線型群はBruhat分解される[3]。つまり BBorel部分群(上あるいは下三角行列からなる部分群)、WWeyl群置換行列からなる部分群)としたとき一般線型群 G = GLn(F)両側剰余類として

と分解される。

BNペア

一般線型群はBNペアを持つ[4]G対角行列からなる部分群 T[注 5]G における正規化群N = NG(T) とおけば、N単項行列からなる部分群で (B, N) はBNペアをなす。

関連項目

脚注

  1. ^ F としては有理数 Q実数 R複素数 C などを例に考えればよい。
  2. ^ V 上の自己準同型写像 (endomorphism) の意。
  3. ^ V 上の自己同型写像 (automorphism) の意。
  4. ^ U の元 u冪単英語版 (unipotent) ―つまり 1 − uべき零行列―なので慣習的に U を使う。
  5. ^ Torusの意。

出典

参考文献


一般線型群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/12 05:55 UTC 版)

シローの定理」の記事における「一般線型群」の解説

q = peからなる有限体 'F'q 上の一般線型群を G = GL(n, q) とおく。シローの定理から位数 |G|p = qn(n − 1)/2 のシロー p-部分群 U が存在する。たとえば n = 3 のとき U = { ( 1 x z 0 1 y 0 0 1 ) | x , y , z ∈ F q } {\displaystyle U=\left\{{\begin{pmatrix}1&x&z\\0&1&y\\0&0&1\end{pmatrix}}{\mathrel {}}{\Bigg |}{\mathrel {}}x,y,z\in \mathbb {F} _{q}\right\}} は GL(3, q) のシロー p-部分群で、位数q3である。一般の n についても同様で、主対角成分が1の上三角行列からなる群は GL(n, q) のシロー p-部分群である。

※この「一般線型群」の解説は、「シローの定理」の解説の一部です。
「一般線型群」を含む「シローの定理」の記事については、「シローの定理」の概要を参照ください。

ウィキペディア小見出し辞書の「一般線型群」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「一般線型群」の関連用語

一般線型群のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



一般線型群のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの一般線型群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのシローの定理 (改訂履歴)、保型形式のL-函数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS