同型写像とは? わかりやすく解説

同型写像

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/23 04:26 UTC 版)

同型写像どうけいしゃぞう: isomorphism[note 1])あるいは単に同型とは、数学において準同型写像あるいはであって、逆射を持つものである[note 2]

解説

2つの数学的対象同型 (isomorphic) であるとは、それらの間に同型写像が存在することをいう。自己同型写像は始域と終域が同じ同型写像である。同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある。したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい。

1の5乗根が乗法についてなす群は正五角形の回転が合成についてなす群に同型である。

を含むほとんどの代数的構造に対して、準同型写像が同型写像であることと全単射であることは同値である。

位相幾何学において、射とは連続写像のことであるが、同型写像は同相写像あるいは双連続写像とも呼ばれる。解析学において、射は可微分関数であり、同型写像は微分同相とも呼ばれる。

標準的な同型写像 (canonical isomorphism) は同型であるような標準的な写像英語版である。2つの対象が標準的に同型 (canonically isomorphic) であるとは、それらの間に標準的な同型写像が存在することをいう。例えば、有限次元ベクトル空間 V から二重双対空間への標準的な写像は標準的な同型写像である。一方、V は双対空間に同型であるが、一般には標準的にではない。

同型写像は圏論を用いて形式化される。ある圏の射 f: XY が同型射であるとは、両側逆射を持つことをいう。すなわち、その圏における別の射 g: YX があって、gf = 1X かつ fg = 1Y となる。ただし 1X1Y はそれぞれ XY の恒等射である[1]

対数と指数

R+ を正の実数のなす乗法群とし、R を実数のなす加法群とする。

対数関数 log: R+R はすべての x, yR+ に対して log(xy) = log x + log y を満たすので、それは群準同型である。指数関数 exp: RR+ はすべての x, yR+ に対して exp(x + y) = (exp x)(exp y) を満たすので、それも準同型である。

恒等式 log exp x = x および exp log y = ylogexp が互いの逆関数であることを示している。log は準同型である逆関数を持つ準同型であるから、群同型である。

log は同型だから、正の実数の積を実数の和に翻訳する。この機能により、定規対数表英語版を用いて、あるいは対数スケールの計算尺を用いて実数を掛けることができる。

6を法とした整数

0 から 5 までの整数が 6 をとした加法でなす群 (Z6, +) を考える。また、群 (Z2 × Z3, +) を考える。これは x 座標が 0 か 1 で y 座標が 0 か 1 か 2 の順序対で、加法は x 座標は 2 を法とし、y 座標は 3 を法とする。

これらの構造は以下の対応によって同型である:

(0,0) → 0
(1,1) → 1
(0,2) → 2
(1,0) → 3
(0,1) → 4
(1,2) → 5

あるいは一般に (a, b) → (3a + 4b) mod 6.

例えば、(1, 1) + (1, 0) = (0, 1) であり、もう一方に翻訳すると 1 + 3 = 4 である。

これらの2つの群は集合が異なる元を含むという意味で違って「見える」にもかかわらず、それらは実際同型であり、構造は全く同じである。より一般に、2つの巡回群 ZmZn直積Zmn と同型であるのは、mn互いに素であるとき、かつそのときに限る。

関係を保つ同型

1つの対象が集合 X二項関係 R からなり、もう1つの対象が集合 Y と二項関係 S からなるとき、X から Y への同型写像は全単射 f: XY であって

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。このテンプレートの使い方
出典検索?"同型写像" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
2010年9月
  1. ^ Awodey, Steve (2006). “Isomorphisms”. Category theory. Oxford University Press. p. 11. ISBN 9780198568612. https://books.google.com/books?id=IK_sIDI2TCwC&pg=PA11 
  2. ^ Vinberg, Ėrnest Borisovich (2003). A Course in Algebra. American Mathematical Society. p. 3. ISBN 9780821834138. https://books.google.com/books?id=kd24d3mwaecC&pg=PA3 
  3. ^ Mazur 2007.

参考文献

関連項目

外部リンク


同型写像

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/07/08 21:20 UTC 版)

ジャイロベクトル空間」の記事における「同型写像」の解説

ジャイロ空間の同型写像は、ジャイロ群の加算スカラー倍、そして内積を保つ。 先に述べた3つのジャイロ空間(メビウスジャイロ空間、アインシュタインジャイロ空間固有速度ジャイロ空間)は同型である。 M, E, Uをそれぞれメビウスアインシュタイン固有速度ジャイロベクトル空間とし、それぞれの要素 vm, ve, vu を取る。このとき、これらの間の同型写像は以下のように与えられる。 E → {\displaystyle \rightarrow } U by γ v e v e {\displaystyle \gamma _{\mathbf {v} _{e}}\mathbf {v} _{e}} U → {\displaystyle \rightarrow } E by β v u v u {\displaystyle \beta _{\mathbf {v} _{u}}\mathbf {v} _{u}} E → {\displaystyle \rightarrow } M by 1 2E v e {\displaystyle {\frac {1}{2}}\otimes _{E}\mathbf {v} _{e}} M → {\displaystyle \rightarrow } E by 2 ⊗ M v m {\displaystyle 2\otimes _{M}\mathbf {v} _{m}} M → {\displaystyle \rightarrow } U by 2 γ 2 v m v m {\displaystyle 2{{{\gamma }^{2}}_{\mathbf {v} _{m}}}\mathbf {v} _{m}} U → {\displaystyle \rightarrow } M by β v u 1 + β v u v u {\displaystyle {\frac {\beta _{\mathbf {v} _{u}}}{1+\beta _{\mathbf {v} _{u}}}}\mathbf {v} _{u}} ただし、 ⊕ E {\displaystyle \oplus _{E}} と ⊕ M {\displaystyle \oplus _{M}} は次の等式与えられる。 u ⊕ E v = 2 ⊗ ( 1 2 ⊗ u ⊕ M 1 2 ⊗ v ) {\displaystyle \mathbf {u} \oplus _{E}\mathbf {v} =2\otimes \left({{\frac {1}{2}}\otimes \mathbf {u} \oplus _{M}{\frac {1}{2}}\otimes \mathbf {v} }\right)} u ⊕ M v = 1 2 ⊗ ( 2 ⊗ u ⊕ E 2 ⊗ v ) {\displaystyle \mathbf {u} \oplus _{M}\mathbf {v} ={\frac {1}{2}}\otimes \left({2\otimes \mathbf {u} \oplus _{E}2\otimes \mathbf {v} }\right)} これはメビウス変換ローレンツ変換の関係に関係がある。

※この「同型写像」の解説は、「ジャイロベクトル空間」の解説の一部です。
「同型写像」を含む「ジャイロベクトル空間」の記事については、「ジャイロベクトル空間」の概要を参照ください。

ウィキペディア小見出し辞書の「同型写像」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「同型写像」の関連用語






6
54% |||||





同型写像のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



同型写像のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの同型写像 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのジャイロベクトル空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS