数学的対象とは? わかりやすく解説

数学的対象

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/06 17:56 UTC 版)

数学および数学の哲学において、数学的対象(すうがくてきたいしょう、: mathematical object)は、数学の中から生じてくる抽象的対象である。

一般的に遭遇する数学的対象として、順列分割行列集合関数、および関係などが挙げられる。数学の分科としての幾何学は、六角形三角形多面体位相空間、および多様体のような対象を持つ。別の分科の代数学は、格子、およびといった対象を持つ。は、数学的対象を一斉に生じさせるものであるとともに、それ自体がひとつの数学的対象である。

数学的対象の存在論的な立場は、数学の哲学で調査および議論される重要な主題である。この議論については、論文(Burgess & Rosen 1997)を参照のこと。

カントールの枠組み

20世紀の変わり目頃に現れたカントールの仕事によってもたらされた観点は、全ての数学的対象は集合によって定義できるというものであった。{0,1} という集合は比較的明確な例である。表面的には、2 を法とする整数の Z2 もまた二つの要素を持った集合である。しかしそれは単に集合 {0,1} であるのではない。これは 2 を法とするおよび反数演算によって Z2 へ割り当てられた付加構造について言及していないからである。例えば、0 または 1 のどちらが加法単位元であるのかをわれわれはどのようにして知ればよいのか? この群を集合として体系化するためには、まず四つ組 ({0,1},+,−,0) として規定し、次に四つ組を集合として表すいくつかの慣習のうちの一つを使ってやれば集合として書けるから、あとは必然的に +, −, 0 を集合として規定すればよい。

このアプローチは、数学の存在論は実践や教育法の影響を受けるべきであるかどうかという根源的に哲学的な問いが生じる。数学者はそのような符号化についての研究は行わない、符号化は規範的でも実践的でもない。それらはどんな代数学の教科書にも現れないし、代数学の教程の学生も指導者もそのような符号化には全く精通していない。それゆえ、もし存在論が実践を反映するべきものであるならば、数学的対象はこの方法では集合へ還元できない。

基礎付けに関わる逆理

しかしながら、もし数学的存在論が数学の内部無矛盾性を成立させるために作られているとしたら、数学的対象はそのパラドックス本質をあらわにするために、実際の実践とは無関係に、ある単一の方法で(例えば、集合として)定義ができることはより重要である。これは数学基礎論によって取られてきた観点である。数学基礎論は伝統的に、数学的対象を集合として定義することに対する正当化として、パラドックスをうまく扱うことに数学的実践の詳細を正確に反映することよりも高い優先順位を与えてきた。

集合を備えた数学的対象のこの根本的な同定によって作られた緊張の多くは、根本的な目的を過度に妥協することなく和らげることができる。すなわち、二種類の対象を数学的宇宙、集合および関係の中へ入れることによって、その二つの対象を単なる他のものの実体と見なすような要求は生じない。これらは、述語論理議論領域としてモデル理論の基礎を形成している。この観点では、数学的対象は述語論理の言語で表現された形式理論英語版公理を満たす実体である。

圏論

このアプローチの変化形は、関係を演算で置き換える普遍代数学の基礎である。この変化形において、公理はよく方程式または方程式間の陰伏関係の形を取る。

より抽象的な変化形は圏論である、これは集合を対象として、その上の演算をこれらの対象間のとして抽象化する。この抽象化のレベルにおける数学的対象は、単にそのグラフ頂点へ還元される。射としてのそのグラフのは、これらの対象を変換できる方法を抽象化し、そのグラフの構造は射の合成法則において符号化される。は、(通常は、具体圏である、すなわち集合の圏への、またはより一般的には適切なトポスへの忠実忘却関手を備えている場合に)いくつかの公理的な理論のモデルおよびそれらの間の準同型として生じる、または他のより原始的な圏より構成されるであろう。また、圏はその起源とは関わりなく、それ自身で意味を持つ抽象的対象として研究されうる。

脚注

参考文献

  • Azzouni, J., 1994. Metaphysical Myths, Mathematical Practice. Cambridge University Press.
  • Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object. Oxford Univ. Press.
  • Davis, Philip and Reuben Hersh, 1999 [1981]. The Mathematical Experience. Mariner Books: 156-62.
  • Gold, Bonnie, and Simons, Roger A., 2008. Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America.
  • Hersh, Reuben, 1997. What is Mathematics, Really? Oxford University Press.
  • Sfard, A., 2000, "Symbolizing mathematical reality into being, Or how mathematical discourse and mathematical objects create each other," in Cobb, P., et al., Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools and instructional design. Lawrence Erlbaum.
  • Stewart Shapiro, 2000. Thinking about mathematics: The philosophy of mathematics. Oxford University Press.

外部リンク


数学的対象

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/24 15:50 UTC 版)

哲学上の未解決問題」の記事における「数学的対象」の解説

詳細は「数学的対象」を参照 数、集合、群、点などといったものは何なのか。それらは実在するものなのか、それとも単純にあらゆる構造存在する関係性なのか。数学的対象とは何であるかについて多く異なる見解存在するが、議論2つ対立する学派大別されるように思われる。数学的対象が実在であると主張するプラトニズムと、数学的対象は単なる形式的構造であると主張する形式主義である。この論争は、「連続体仮説のような具体例考えるときよりよく理解されるかもしれない連続体仮説は、集合論ZF公理とは無関係に証明されているので、その系内では、この命題証明反証できない。したがって形式主義者は、あなたが質問文脈をさらに洗練しない限り連続体仮説は真でも偽でもないと言うだろう。しかし、プラトン主義者は、連続体より小さいが、任意の可算集合よりも大き基数を持つ超限集合存在する存在しないかのいずれかだと主張するだろう。それゆえ、それが証明不可能であると証明されたかどうによらずプラトン主義者は答えそれでもなお存在する主張するだろう。

※この「数学的対象」の解説は、「哲学上の未解決問題」の解説の一部です。
「数学的対象」を含む「哲学上の未解決問題」の記事については、「哲学上の未解決問題」の概要を参照ください。

ウィキペディア小見出し辞書の「数学的対象」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「数学的対象」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「数学的対象」の関連用語

数学的対象のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



数学的対象のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの数学的対象 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの哲学上の未解決問題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS