連続体仮説
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/02 14:19 UTC 版)
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 |
連続体仮説(れんぞくたいかせつ、Continuum hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。
発想
1個よりも多い最小の個数は2個である。2個よりも大きい最小の個数は3個である。このように、有限の個数に対しては1を足すことでそれ自身よりも大きい最小の個数を得ることができる。では無限の個数に対してはどうであろうか。自然数や実数は無限個存在する。これらの個数は異なるはずであるが、個数という呼び方をする限りいずれも「無限」である。これに対して、有限集合の場合の要素数の概念を無限集合にまで拡張した「集合の濃度」(二つの集合間に一対一対応が存在するとき二つの集合の濃度は等しいとする)を考えることにより2つの無限は区別される(詳細は濃度を参照)。無限集合の濃度(無限の個数)で最も小さいものは可算濃度(自然数全体の集合の濃度)である。しかし、可算濃度の無限集合に要素を1つ追加した集合もやはり可算濃度であり、有限集合の場合のように新しい濃度にはならない。可算濃度の無限集合同士の合併集合も可算濃度である。しかし、実数全体の集合は可算濃度ではないことが示された。そこで次に、可算濃度よりも大きい最小の濃度は連続体濃度(実数の集合の濃度)であろうと考えられた、これが連続体仮説である。
連続体仮説の表現
自然数より真に大きく、実数より真に小さいサイズの集合がない、ということを連続体仮説は述べている。もう少し正確には連続体仮説は「自然数を含むような任意の実数の部分集合は、実数との間に全単射が存在するか、自然数との間に全単射が存在するかのいずれかである」とも言い表せる。
自然数の全体を N と書き、そこにふくまれる自然数の個数(濃度)を可算濃度 カテゴリ
連続体仮説
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/01/05 06:03 UTC 版)
「カントールの対角線論法」の記事における「連続体仮説」の解説
詳細は「連続体仮説」を参照 カントールの定理において、Xとして自然数の集合Nを考える。この冪集合の濃度2N は連続体濃度に等しいことが知られている。では、果たして可算濃度 |N| とその冪集合の濃度 2N の間に濃度が存在するのだろうか。つまり |N| < m < 2N なる濃度 m は存在しない という主張が連続体仮説と呼ばれるものである。これはヒルベルトの23の問題の第1問題として挙げられた。 またこれを一般化して、 無限濃度 n に対して、n < m < 2n なる m は存在しない というのが、一般連続体仮説である。一般連続体仮説のZFからの無矛盾性をクルト・ゲーデルが、独立性を1963年にポール・コーエンがそれぞれ証明した。
※この「連続体仮説」の解説は、「カントールの対角線論法」の解説の一部です。
「連続体仮説」を含む「カントールの対角線論法」の記事については、「カントールの対角線論法」の概要を参照ください。
連続体仮説と同じ種類の言葉
- 連続体仮説のページへのリンク