数学基礎論とは? わかりやすく解説

Weblio 辞書 > 固有名詞の種類 > 人名 > 学者・研究者 > 哲学者 > 論理学者 > 数学基礎論の意味・解説 

すうがく‐きそろん【数学基礎論】

読み方:すうがくきそろん

数学基礎に関する理論19世紀導入され集合論逆理逆説)を派生させたが、その反省から生まれた数学とはいかなるのであるべきかの理論20世紀初頭に成立記号論理学用いる。


数学基礎論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/21 05:20 UTC 版)

(すうがくきそろん、: foundations of mathematics[1], mathematical logic and foundations of mathematics[2])は、現在の日本では、もっぱら数理論理学(mathematical logic)を指す言葉として使われる[3][4][5][注 1]

概要

数学書での解説

  • 新井敏康『数学基礎論 Mathematical Logic』(増補版):「基礎的な概念に十分に満足のいく数学定義を与え, 現在も発展している数学の一分野である」[6]

数学辞典での解説

  • 『岩波 数学入門辞典』:数理論理学や超数学(metamathematics[5]、メタ数学)とほぼ同義であり、「論理を扱う数学の一分野」[7][注 2]
  • 『岩波 数学辞典』:「数学基礎論 … mathematical logic and foundations of mathematics … 数学基礎論はこの〔数学的理論の形式化構文論的側面と意味論的側面の双方からの視点を意識した研究の行われる分野である. … 近年はより適切に数理論理学と呼ばれることも多くなった」[9][注 3]

百科事典での解説

歴史

かつてはヒルベルトとベルナイスの『数学の基礎』に基づき、ヒルベルト・プログラムによって数学の諸体系の無矛盾性証明を行う超数学 (metamathematics) としての証明論を指す言葉であった[12][注 5]

脚注

注釈

  1. ^ 以下、新井敏康の『数学基礎論 Mathematical Logic』(増補版 2021年)からの引用[3]
    数学基礎論 (Mathematical Logic, 数理論理学, 通称「基礎論」)
    以下、菊池誠の『不完全性定理 The Incompleteness Theorems』(2014年)からの引用[4]

    「不安の時代」が通り過ぎた後, 数学基礎論は哲学と袂を分かち, 独自の数学的な問題意識や価値観を見出した. 数学基礎論の専門家は「哲学的な動機のもとで数学基礎論を語る時代は終わった」と考えるようになり, 哲学を連想させる「数学基礎論」という名称よりも, 「数理論理学」や「論理学」, ただし「数学」や「哲学」と対峙する「論理学」ではなく, 「代数学」や「幾何学」と並ぶ「論理学」という名称を好むようになった. 数字基礎論は普通の数学に生まれ変わった.

  2. ^ 以下、『岩波 数学入門辞典』(2005年)からの引用[1][8]

    数学基礎論
     foundations of mathematics
     数理論理学や超数学とほぼ同じ意味で,論理を扱う数学の一分野である. … ゲーデルの不完全性定理有限の立場(形式主義)で数学の無矛盾性を証明することはできないことを示した.ゲンツェン(Gentzen)は,有限の立場より緩い制限のもとで自然数論の無矛盾性を証明した.
     数学基礎論は計算機科学コンピュータ科学〕とも密接に結びついている.

    数理論理学
     mathematical logic
     数学の理論を展開する際にその骨格となる論理の構造を研究する分野をいう.数学基礎論とほぼ同義である.

  3. ^ 以下、『岩波 数学辞典』(2011年)からの引用[9]

    数学基礎論
     [英]mathematical logic and foundations of mathematics

     数学の基礎づけの問題と数学基礎論の発生

     集合概念の有効な方法が,逆理に導く用法とすこぶる類似していること,その逆理がほとんど形式論理の範囲内で現れることは,数学における概念構成法,論法についての数学的な反省を促し,ここに数学の基礎づけの問題が発生した.[2]

    数学の基礎づけの問題自体はK. ゲーデルの不完全性定理により一応の結着を見ることになるが,それまでの過程で,数学的理論の形式化によって生じる形式体系の構文論や意味論の概念が意識されるようになり,そこに数学的問題が存在することが明らかになった.数学基礎論はこの形式化の構文論的側面と意味論的側面の双方からの視点を意識した研究の行われる分野である.数学基礎論という名称は上記に挙げた歴史的事情に基づくものであり,近年はより適切に数理論理学と呼ばれることも多くなった.[5]

     計算機科学〔コンピュータ科学〕と数学基礎論はチューリング機械をはじめとする様々な計算モデル計算可能関数の理論の精密化・計量化である計算量理論自動証明における導出原理型理論Curry-Howard の同型対応などいくつもの分野で密接な繋がりを持っている(→34 エルブランの定理導出原理,64 型理論λ計算).[10]

  4. ^ 以下、『ブリタニカ百科事典』からの原文引用:

    Summary
    ...
    foundations of mathematics, Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid’s Elements as an inquiry into the logical and philosophical basis of mathematics—in essence, whether the axioms of any system (be it Euclidean geometry or calculus) can ensure its completeness and consistency.[11]

  5. ^ キューネン『数学基礎論講義』の内容は集合論・モデル理論・証明論・再帰理論という数理論理学の四大分野である[要ページ番号]

出典

  1. ^ a b 青本 et al. 2005, p. 294.
  2. ^ a b 日本数学会(編) 2011, p. 573.
  3. ^ a b 新井 2021, p. iv.
  4. ^ a b 菊池 2014, p. iii.
  5. ^ a b c 日本数学会(編) 2011, p. 575.
  6. ^ 新井 2021, p. ix.
  7. ^ 青本 et al. 2005, pp. 294, 297.
  8. ^ 青本 et al. 2005, p. 297.
  9. ^ a b 日本数学会(編) 2011, pp. 573, 575.
  10. ^ 日本数学会(編) 2011, p. 576.
  11. ^ a b Lambek, Joachim. “foundations of mathematics” (英語). Britannica. Encyclopedia Britannica. Encyclopædia Britannica, Inc.. 2022年7月11日時点のオリジナルよりアーカイブ。2022年9月25日閲覧。
  12. ^ 竹内外史・八杉満利子『数学基礎論』共立出版(1956年、初版)[要ページ番号]

参考文献

数学辞典

関連項目


数学基礎論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/02/14 06:33 UTC 版)

竹内外史」の記事における「数学基礎論」の解説

ゲーデルによって、1931年算術上の数学的内容をもった形式的体系がもし無矛盾ならば、その無矛盾性の証明はその体系の中で形式化されうるようなしかたによっては証明できない(不完全性定理)ことが示されヒルベルト・プログラム遂行至難なことがわかったその後有限立場発展させることによって、1936年ゲンツェン算術(純粋数論)の無矛盾性証明した本質的に算術超える内容をもつ実数論ないしは解析学となると不可避的に集合概念を含むためその無矛盾性の証明極度に困難である。竹内は、1953年LK拡張して高階述語論理をゲンツェン・タイプで形式化(GLC呼ばれる)し、GLCに対してゲンツェン基本定理同様な定理成り立つという予想(竹内基本予想英語版)と呼ばれる)を立て基本予想有限構成的しかたで証明できれば解析学無矛盾性一挙に解決されることを示したその後基本予想部分的解決重ねとともに、その補助手段として構成的順序数一種であるordinal diagramなる概念導入その理論発展整備補強努め広範な内容をもつ解析学部分体系の無矛盾性証明した

※この「数学基礎論」の解説は、「竹内外史」の解説の一部です。
「数学基礎論」を含む「竹内外史」の記事については、「竹内外史」の概要を参照ください。

ウィキペディア小見出し辞書の「数学基礎論」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「数学基礎論」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



数学基礎論と同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「数学基礎論」の関連用語

数学基礎論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



数学基礎論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの数学基礎論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの竹内外史 (改訂履歴)、ヘルマン・ワイル (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS