論理的帰結とは? わかりやすく解説

論理的帰結

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/15 14:28 UTC 版)

論理的帰結(ろんりてききけつ、伴意: logical consequence, entailment)は、論理学における最も基本的な概念であり、複数の(または命題)の集合と1つの文(命題)の間が「~だから、当然~」という繋がり方をする関係を指す。例えば、「カーミットは緑色だ」という文は、「全てのカエルは緑色だ」と「カーミットはカエルだ」の論理的帰結である。




「論理的帰結」の続きの解説一覧

論理的帰結

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/25 04:10 UTC 版)

一階述語論理」の記事における「論理的帰結」の解説

Σ を論理式集合とし、φ を論理式とする。Σ に属すすべての論理式 ψ に対して M(ψ, s) = 1 であるよう任意の構造 M と M の個体割り当て関数 s が M(φ, s) = 1 をみたすとき、φ は Σ の論理的帰結 (logical consquence) であるといい、 Σ ⊨ φ {\displaystyle \Sigma \vDash \varphi } と書く。論理式 φ と ψ が { φ } ⊨ ψ {\displaystyle \{\varphi \}\vDash \psi } かつ { ψ } ⊨ φ {\displaystyle \{\psi \}\vDash \varphi } をみたすとき、φ と ψ は論理的に同値 (logically equivalent) であるという。また、φ が ∅ の論理的帰結である場合、すなわち任意の構造 M と M の個体割り当て関数 s に対して M(φ, s) = 1 であるとき、φ は恒真 (valid) であるという。φ と ψ が論理的に同値であることは、(φ ↔ ψ) が恒真であることと同値である。

※この「論理的帰結」の解説は、「一階述語論理」の解説の一部です。
「論理的帰結」を含む「一階述語論理」の記事については、「一階述語論理」の概要を参照ください。

ウィキペディア小見出し辞書の「論理的帰結」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「論理的帰結」の例文・使い方・用例・文例

  • 論理的帰結
Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「論理的帰結」の関連用語

論理的帰結のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



論理的帰結のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの論理的帰結 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの一階述語論理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2023 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2023 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2023 GRAS Group, Inc.RSS