スコーレム標準形
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/03 17:23 UTC 版)
スコーレム標準形(スコーレムひょうじゅんけい、英: Skolem normal form)とは、数理論理学において一階述語論理における存在記号がすべて全称記号の前にある冠頭標準形の論理式を言う。
トアルフ・スコーレムによるスコーレムの定理により、第一階述語論理における任意の論理式に対して、演繹的に等価(deductive equivalence)[1]なスコーレム標準形の論理式が存在する[2]。
定義
冠頭標準形(prenex normal form)
第一階述語論理における任意の論理式は、論理式の一番前にすべて否定形でない前置記号を持ち、その作用域がどれも論理式の終わりまで及ぶような標準形に直すことができる。
このような標準形を冠頭標準形(prenex normal form)と呼ぶ[3]。なお、冠頭標準形の一番前から数えて存在記号の前にある全称記号の数を、その冠頭標準形の次数(degree)と呼ぶ。
スコーレム標準形(Skolem normal form)
- スコーレム標準形のページへのリンク