順列とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 言葉 > 関係 > 並べ方 > 順列の意味・解説 

じゅん‐れつ【順列】

読み方:じゅんれつ

順序に従って並べること。

数学で、n個のものからr個を取り出し順序決めて1列に並べたもの。その総数nPrで表すと、nPrnn−1)(n−2)…(nr+1)となる。


順列

数個のものを1列に並べたものを、それらのものの順列という。

n個の異なるものからr個を取り出してできる順列の総数は、[数式] である。

参考

順列(じゅんれつ)

n個のものを1列に並べ並べ方をいう。

順列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/10 05:59 UTC 版)

数え上げ数学における順列(じゅんれつ、: sequence without repetition, partial permutation: arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無いをいう[1]

初等組合せ論における「写像12相」はともに 有限集合から k-個の元を取り出す方法として可能なものを数え上げる問題に関するものである[2]。取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。

定義

定義 1
位数 n の有限集合 E と自然数 k に対し、E の元からなる k-順列とは {1, 2, …, k} から E への単射を言う。
定義 2
位数 n の有限集合 E と自然数 k に対し、E の元からなる k-順列(E に関する k-順列、En-個の元から k-個を選ぶ順列)とは、k-組 (a1, a2, …, ak)ij (i, j ∈ {1, 2, …, k}) ⇒ aiaj を満たすものを言う。

記法について

初等組合せ論において、n 個の元から k-個を選んで得られる順列の総数を表すのにいくつか異なる記号、例えば nPk, nPk, Pn,k, P(n,k) などが用いられる(同様の記法で "P" を "C" に代えたものは n-元集合の k-組合せの総数を表す)。kn のとき、その値は積 n × (n − 1) × (n − 2) × … × (nk + 1) によって表される[3]。一方、k > n のとき(上記の積は定義されないにも拘らず)k-順列の総数 nPk は単に 0 と定められる。

この記法を、初等組合せ論とは別な文脈で k-順列を考える場合に用いることは稀であるが、この数を扱う様々な状況において、適当な記法が用いられる。上記の積に関して、n が非負整数でないものとしても積自体は定義可能で、組合せ論の外で重要な役割を持つ。この場合、上記の積はポッホハマー記号 (n)k あるいは、k-次下降階乗冪 nk で表される(呼び方や記法の詳細はポッホハマー記号の項へ譲る)。

順列の数え上げ

ここでは S の相異なる k-個の元からなる順序付けられた組を Sk-順列(あるいは k-項順列)と呼ぶ。例えば、文字の集合 {C, E, G, I, N, R} が与えられたとき、文字列 ICE3-順列、RINGRICE4-順列、NICERREIGN5-順列、CRINGE6-順列である(6-順列の例は、与えられた集合の元を使い切っているので、組合せ論的な意味での置換の例でもある)。他方、ENGINE は、文字 EN をそれぞれ二度用いているので順列ではない。

集合 S の大きさ、つまり選ぶことのできる元の種類を、n とする。k-順列を構成するには、まず列の最初の項として取り得る可能性が n-通り(これはつまり 1-順列の総数)だけある。最初の項が決まれば、選んだ以外の残りの元から第二項を選ぶことができるから、第二項の選び方は (n − 1)-通り、従って 2-順列の総数は n × (n − 1) になる。同様に、この列の後続項ではその選び方の可能性が直前の項のそれより 1 ずつ減っていくから、選び得る k-順列の総数 P(n,k) は結局


「順列」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



順列と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「順列」の関連用語

順列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



順列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
数理検定協会数理検定協会
Copyright©2025 数理検定協会 All Rights Reserved.
日本酒日本酒
(c)Copyright 1999-2025 Japan Sake Brewers Association
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの順列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS