準同型写像の種類
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/11/21 14:08 UTC 版)
準同型 h: G → H が全単射ならば、その逆写像もまた準同型になることが示せる。このとき h は群同型写像 (group isomorphism) であるといい、群 G と H は互いに同型 (isomorphic) であるという。互いに同型な群というのは、その元の記述の仕方が違うだけで、実用上は同一視できる。 定義域と終域が同じ群準同型写像 h: G → G は G の自己準同型写像という。さらに、h が全単射、すなわち同型になるとき、自己同型という。G のすべての自己同型からなる集合は、写像の合成を演算として群をなす。これを、G の自己同型群と言い、Aut(G) と表記する。たとえば、群 (Z, +) の自己同型群は、恒等変換と −1 倍写像の二つの元のみからなり、Z/2Z に同型である。 全射準同型(つまり、上への写像となっているような準同型)を全準同型 (epimorphism) という。また、単射準同型(つまり、一対一写像となっていうような準同型)を単準同型 (monomorphism) という。
※この「準同型写像の種類」の解説は、「群準同型」の解説の一部です。
「準同型写像の種類」を含む「群準同型」の記事については、「群準同型」の概要を参照ください。
- 準同型写像の種類のページへのリンク