全射
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/29 14:52 UTC 版)
数学において、写像が全射的(ぜんしゃてき、英: surjective, onto)であるとは、その終域となる集合の元はどれもその写像の像として得られることを言う。即ち、集合 X から集合 Y への写像 f について、Y の各元 y に対し f(x) = y となるような X の元 x が(一般には複数あってもよいが)対応させられるとき、写像 f は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。
注釈
- ^ 全射の代わりに「上への」という言葉を用いる文献では、単射の代わりに「一対一」(one-to-one) という言葉が使われるが、後者は全単射を表す「一対一対応 (one-to-one correspondence)」とまぎらわしい。 容易に類推されるように「中への」(into) という言葉が全射でない写像を表すのに用いられる場合が稀にある(例えば、ケリー (1968),彌永 & 小平 (1961))。体の準同型(これは常に単射)が全射(従って同型)でないとき、「中への同型」と呼ぶことはよくある。
出典
- ^ Goldblatt, Robert (2006) [1984]. Topoi, the Categorial Analysis of Logic (Revised ed.). Dover Publications. ISBN 978-0486450261 2009年11月25日閲覧。
- ^ Cioabă, S. M.; Murty, M. R. (2009). “3.3. Counting Surjective Maps”. A First Course in Graph Theory and Combinatorics. Hindustan Book Agency. ISBN 978-81-85931-98-2
全射
- >> 「全射」を含む用語の索引
- 全射のページへのリンク