最小多項式_(線型代数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 最小多項式_(線型代数学)の意味・解説 

最小多項式 (線型代数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/09/29 14:50 UTC 版)

線型代数学において、 F 係数の n × n 行列 AF 上の最小多項式(さいしょうたこうしき、: minimal polynomial)とは、F-係数のモニック多項式 p(x) であって、p(A) が零行列となるようなものの中で次数最小のものを言う。q(A) = 0 となる F-係数多項式 q(x) は最小多項式 p(x) で割り切れる。

次の3つの主張は同値である:

  1. λ ∈ F は、A の最小多項式 p(x) の根である。
  2. λ ∈ F は、A固有多項式の根である。
  3. λ ∈ F は、A固有値である。

A の最小多項式 p(x) における根 λ の重複度は、λ に対応する A のジョルダン細胞の最大次数を表す。

一般に、最小多項式は固有多項式と一致するとは限らない。例えば、4In を考える。(Inn 次単位行列。)この行列の固有多項式は (x − 4)n である。一方、4In − 4In = 0 であることから、最小多項式は x − 4 である。従って、n ≥ 2 ならば、4In の最小多項式と固有多項式は一致しない。

ケーリー・ハミルトンの定理と上の注意により、最小多項式は常に固有多項式を割り切ることが従う。

定義

F 上の有限次元ベクトル空間 V 上の線型変換 T に対し、

とおく。ここで F[x] は、F 上の一変数多項式環を表す。 は、F[x] の真のイデアルとなる。F は体だから F[x] は主イデアル整域であり、任意のイデアルは F の単元倍を除いて一意的な1つの多項式によって生成される。したがってとくに IT の生成元としてモニックな多項式をとることができ、これを T最小多項式と言う。最小多項式は、 中のモニック多項式の中で次数が最小のものである。

応用

V 上の線型変換 T が対角化可能であることと、すべてのジョルダン細胞の次数が1であることとが同値である。従って、体 F 上の有限次元ベクトル空間 V の線型変換 T が対角化可能であるための必要十分条件は、T の最小多項式が F 上で一次式の積に分解し、すべての根の重複度が1であることである。

計算法の一例

F 上のベクトル空間 V とその線型変換 T および V の元 v に対して、

と定義する。これは、F[t] の自明でないイデアルとなる。 を、このイデアルを生成するモニック多項式とする。

この多項式は次の性質を満たす。

  • を含む。
  • を、線型独立となるような最大の自然数とする。このとき、 ある が存在して、
が成り立ち、さらに
となる。
  • V のひとつの基底 {v1, ..., vn} を取ったとき、T の最小多項式は、すべての たちの公約元である。

関連項目

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「最小多項式_(線型代数学)」の関連用語

最小多項式_(線型代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



最小多項式_(線型代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの最小多項式 (線型代数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS