単項イデアル整域とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 単項イデアル整域の意味・解説 

単項イデアル整域

(主イデアル整域 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/09 11:03 UTC 版)

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域: principal ideal domain; PID)あるいは主環(しゅかん、: anneau principal)とは、任意のイデアル単項イデアルである(可換)整域のことである。

より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。

可換環整域整閉整域一意分解環単項イデアル整域ユークリッド環有限体

単項イデアル整域の例を挙げる。以下では可換環 R の元 a1, …, an の生成するイデアルを (a1, …, an) = { r1a1 + … + rnan | riR } と表す。


単項イデアル整域とならない整域の例を挙げる。

  • Z[X]: 整数係数の一変数多項式環。たとえばイデアル (2, X) は単項イデアルでない。
  • K[X, Y]: 体 K 上の二変数多項式環[3]。たとえばイデアル (X, Y) は単項イデアルでない。

性質

R を単項イデアル整域とすると、以下の性質が成り立つ。

特徴付け

整域 R に対して、以下は同値である。

  1. R は単項イデアル整域である。
  2. R の任意の素イデアルが単項イデアルである[12]
  3. R は UFD かつデデキント整域である。
  4. R の任意の有限生成イデアルが単項イデアル(すなわち Rベズー整域)であり、かつ R は単項イデアルに関する昇鎖条件を満足する。
  5. R にはデデキント–ハッセ・ノルムが入る[13]

体のノルムはデデキント–ハッセノルムだから、5 番の条件からユークリッド整域が PID であることが従う。4番の条件は

と類似する条件になっている。整域がベズー整域であるための必要十分条件は、その任意の二元が「その二元の線型結合である」最大公約元を持つことである。従って、ベズー整域は GCD 整域であり、ゆえに 4 番の条件は PID が UFD であることの別証明を示すものとなっている。

加群の構造

単項イデアル整域上の有限生成加群の構造に関する主要な結果は以下のようなものである。

R が単項イデアル整域で M 有限生成 R-加群であるならば、M は次のような巡回加群(単項生成加群)の有限個の直和に分解される[14][15]




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「単項イデアル整域」の関連用語

単項イデアル整域のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



単項イデアル整域のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの単項イデアル整域 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS